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Abstract

The proliferation of laser systems in the 21st-century is fueled by an increas-

ing demand and comprehension of the capabilities they provide. Understanding

how lasers interact with media during propagation is a premiere field of physics.

The subject area known as laser bioeffects explores laser interactions with biological

cells, tissues, organs, and bodies. This research includes laser applications used in

medicine, establishes safe exposure limits for industry and academia, and generally

studies the many effects of laser light on living creatures. The bioeffects community

relies heavily on deterministic modeling and simulation tools to support experimental

research into damage thresholds and laser effects. However, recent laser applications

require a probabilistic approach to support risk management and analyses method-

ologies. Some probabilistic models exist but their assumptions are largely biased

due to sampling and reporting techniques. This research focuses on building the

first-ever population based probabilistic model for retinal damage using a statistical

model of the optical properties and dimensions of the human eye. Simulated pop-

ulation distributions are used as input to propagation and thermal damage models

for analysis. The results of this research are intended to provide a foundation for

future probabilistic models and applications.
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PROBABILISTIC MODEL FOR LASER DAMAGE TO THE

HUMAN RETINA

1. Introduction

Since the invention of the laser in the mid-20th century, the technology has become

vital to the existence of a seemingly uncountable number of commercial, academic,

medical, and defense applications. The art of directing coherent light into a spatial

domain with high precision allows for cutting raw materials, studying the properties

of matter, non-invasive imaging of the human body, and guiding munitions to their

targets. As of January 31, 2012, the United States Patent and Trademark Office

Patent Application Full-Text and Image Database shows an incredible 393,012 patent

applications for inventions related to laser technologies since 2001. The limitations

for laser system applications are seemingly only bounded by our imagination and

technological capability. Charles Townes, one of the men credited with inventing the

laser, said in 1960 that it was “a solution looking for a problem”[36]. This statement

still holds true today. Laser system applications are seemingly only bounded by our

imagination and technological capability.

For each application, safe use of lasers with respect to injury or unsafe condi-

tions is held in high regard. Specific safe exposure guidelines are developed for each

basic family of laser emitter types grouped by beam characteristics such as exposure

duration, wavelength, pulse types, and beam diameter. Tissue-specific guidelines are

based on the exposed body area with a focus on the retina, cornea, and skin. For

each of these exposure locations, the biological response to the light energy is classi-

fied into photothermal, photochemical, and mechanical effects, each coming from a

different exposure type. Due to the sheer number of exposure types and scenarios,

there is no single metric used to define a safe laser exposure.
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Unsafe laser exposures may cause photothermal, photochemical, and mechan-

ical damage to the eye and skin. Photothermal damage is the damage induced by

raising the temperature of the tissue until proteins are denatured, causing loss of

function. It is a primary damage mechanism observed at all laser wavelengths with

exposure durations greater than a microsecond. Photochemical damage is the pro-

cess of changing the chemical makeup of tissue or cells until loss of function occurs.

Photochemical damage is often associated with ultraviolet wavelengths shorter than

500 nanometers. Exposure times for photochemical damage are usually tens of sec-

onds or higher and may be observed at power levels lower than those that would

induce photothermal damage. Mechanical damage effects are those created in a

situation where energy is deposited in sub-microsecond pulses in a relatively small

location, often creating rapid expansion of the absorbing medium until it bursts.

The shockwaves from such a burst may also damage neighboring tissues.

Understanding damage mechanisms is the foundation for establishing safe ex-

posure limits or estimating risk of injury to humans. However, this research is costly

and the use of human subjects is only possible in extreme circumstances such as

the removal of the eye in cases of cancerous tumors. Therefore, there is an implied

limit to the amount of data that can be collected to assist in establishing safe expo-

sure limits. Most of the biological studies focus on animal models that are carefully

chosen as a replacement for human sub-systems. The rest of the data comes from

modeling and simulation. The basis for choosing an animal model is how well it

mimics the human eye in functionality and dimension.

These studies historically focused on determining a damage threshold for the

50th-percentile of the population as a way to state the average power that would

damage a human cell, tissue, or system. This threshold is often determined using

analysis methods that describe the mean value and the spread of experimental data.

These two metrics are then used to determine the confidence interval about the

mean value. This approach is an effective method to determine mean thresholds for
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a population; however, using these measures to do any further analysis in the tails

of the distribution may be problematic .

The need for a probabilistic approach to estimating damage thresholds has

forced researchers to look to the decades of historical data for insights into how

laser energy effects a human population. The confidence intervals about the mean

threshold were taken from the spread of the data under the assumption that damage

thresholds follow a log-normal distribution. The mean value is reported along with

a slope value derived from the location of the data influenced by the amount of

variance in threshold results. This variance comes from experimental error, limits

on precision and accuracy, and biological variance between samples. Reporting the

spread of data with one parameter effectively marginalizes each source of variance

and confounds it to one statistic.

Damage threshold research is intended to create safe exposure limits influenced

primarily by the biological response of the experiment. Therefore, the influences of

biological variance must be considered separately and held isolated from the other

factors. This research effort focuses on the development of a model to to isolate

the biological influence in a probabilistic manner by developing a statistical model

eye. Photothermal damage thresholds are examined in the time domain of 10 to

1000 milliseconds for visible and near infrared wavelengths in the range of 514 to

1064 nanometers. The statistical model eye generates a population eyes using a

covariance structure derived from human data for input to a propagation model. The

propagation model determines the retinal spot size using a ray trace algorithm. This

in turn is used as an input to a laser-tissue interaction (LTI) model to estimate the

damage threshold for each empirically-determined percentile. The final distribution

of damage thresholds is used to create a probabilistic dose-response model for the

experimental region.

The need for probabilistic dose-response models stems from the need to analyze

the risk of using lasers at estimated unsafe power levels. Better probabilistic models
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can serve to improve safe exposure limits. Futhermore, once safe exposure limits have

been re-examined and potentially revised, the dose-response model can be used to

assess risk with more accuracy. Laser applications in defense, medicine, and research

will benefit from the probabilistic approach to modeling laser damage thresholds

described in this research.

The format of this document is two separate papers. The first is the devel-

opment of the statistical eye model based on human covariance data. The paper

examines trends in wavelength and time dependencies of damage thresholds. The

research and findings were presented at the annual SPIE Photonics West Conference

in San Francisco, January 24, 2012. The second paper is the application of the sta-

tistical eye model in the creation of the dose-response model. The model can be used

to establish the design space in the development of future laser systems or in the

development of doctrine, tactics, techniques, and protocols for new or established

systems. Additionally, it provides the foundation for a true population-based risk

analysis tool for safety standards development.
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2. Background

This research effort stems from the need to understand and quantify the biological

influence on decades of laser damage threshold data. Historically, laser damage

threshold experiments report the threshold results of the binary response, of either

damage or no damage, for a given stimulus in terms of laser power using probit

analysis metrics. D. J. Finney developed this method and published a book in 1947

[9] describing how to estimate the probability of a positive response as a function

of a continuous domain of the stimulus. The most frequently reported statistic

from probit analysis is the ED50 value, the level of stimulus associated with a 50%

probability of a response. In laser damage threshold experiments, this is the amount

of power, or dose, of laser energy associated with a damage response event in 50%

of the target samples.

Dose may be calculated with respect to total energy measured in joules (J)

or watts (W) (1watt = 1
joule

second
), or by energy in terms of density defined by the

size of the beam. Power density may be measured in radiant exposure,
J

cm2
, or by

irradiance,
W

cm2
. In the experimental database used in this study and maintained

by the Air Force Research Laboratory’s Tri-Service Research Lab in San Antonio,

Texas, more than 1,200 damage thresholds are reported as total intraocular energy

(TIE). This calculation accounts for pupil size and the is measured strictly in joules

or microjoules. For the purposes of this study, all reported thresholds are reported

in terms of TIE except where specifically noted.

Since ED50 is a mean value of the doses that caused damage in a sample

population, it is implied that doses lower and higher than ED50 exist as damage

thresholds. The probit slope describes the spread of the threshold data. Sliney et al.

[33] calculate this slope using the ratio of ED84 to the ED50, where ED84 is the level

of stimulus associated with an 84% probability of a response. The 84th percentile

comes from statistics where the cumulative distribution function of an assumed nor-
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mal distribution is equal to 0.84 at a distance of one standard deviation higher than

the mean. Some experiments cite the ED16 to reflect the same information. Ad-

ditionally, probit analysis in laser damage threshold research assumes a log-normal

distribution of damage. Therefore, many of the calculations require a logarithmic

transformation.

The techniques involved in probit analysis were initially developed for toxicol-

ogy studies where each test could logically be considered separate and independent to

estimate lethal doses of pesticides. Sliney describes the adaptation of probit analysis

to laser damage threshold studies to be problematic as the underlying assumptions

cannot be made. In damage threshold studies, cost and resources are often limiting

factors. Therefore, many experiments involve the same subject in multiple exposure

locations. Rather than characterizing this sampling technique as multiple indepen-

dent exposures, it is a replicated sampling of the same subject multiple times which

will work to influence the standard deviation and variance of the data.

This and other influences on the variance of the data cause issues to arise with

adopting the probit techniques to laser damage threshold studies in order to examine

probabilistic responses at doses other than the ED50 threshold. Musch [23] and Wol-

barsht [41] support this and also claim that ED50 values are also influenced simply

due to the definition of damage. Damage is not a precise endpoint since characteriza-

tion of damage may vary between experiment, observation, or equipment conditions.

For example, one experiment may use special high-resolution imaging techniques to

determine if a lesion is present with a minimum radius. Other experiments may use

the same exposure and laser beam parameters but define damage by a recognizable

lesion on the retina through an aided viewing device such as a fundus camera. Both

will report damage threshold for a given exposure and laser setting but the thresh-

olds may vary greatly because the measure and method of response was different.

These differences are understood and estimates are used in normalizing thresholds

dependent on how the ED50 was determined; however, these are only estimates so
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they do not entirely eliminate the influence of this variance on the reported thresh-

olds. Exposure location on the retina is another factor that influences damage. The

macula is where the light focuses to provide central vision. It is much more sensitive

and has a lower damage threshold than the areas outside of the macula, known as the

paramacular region. Researchers also normalize for this shift in threshold but the

conversion factor is only an estimate, therefore inducing another source of variance.

The theoretical probit slopes of 1.05 to 1.15 calculated by Sliney et al. suggest

that an ED50 threshold given in logarithm base 10 units equal to some value X50

will have an ED84 between 101.05X50 and 101.15X50 , or between 11.2 and 14.1 times

higher than the reported ED50. In some cases, it was reported that experimentally

collected data often exhibited probit slopes of 1.5 to 1.7. These slopes represent

ED84 powers between 31 and 50 times the ED50 values. These results indicate an

extremely large variability in threshold results that cannot be explained by theory.

This increased variability may influence the reported ED50 thresholds but its effects

are more detrimental to the tails of the probability distribution. Safe exposure limits

are based on the spread of data almost as much as the threshold itself in order to

ensure they exist below the lowest doses where damage may occur. Previously estab-

lished exposure limits and dose-response models are based on existing research but

may be improved through a better understanding of these effects and quantification

of the underlying distribution’s influences. Improvements may include changes to

the linearity of exposure limits with respect to wavelength to raise exposure lim-

its closer to the predicted laser powers where damage may be possible, eliminating

unnecessarily large safety buffers.

Schulmeister et al.[31] agrees with Sliney’s findings and provides an in-depth

review of many supporting factors. This work includes a detailed explanation of

how other experimentally controlled factors can not be known with exact precision

or accuracy, introducing yet another source of variance. Inter-subject variance is also

mentioned as a source of overall uncertainty in establishing damage thresholds. For
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retinal studies, different ocular structure characteristics can influence how the laser

light propagates through the eye and, in turn, the biological response to the photons

at the retina. These characteristics include geometrical, thermal, transmission, and

other physical properties of the eye.

Physical differences between the focal geometries and ocular structures eyes

create a variability in how the light arrives at the retina. Out of tolerance deformities

create refractive errors, increasing the laser spot size on the retinal plane and affecting

the power density calculated at the retina. Although some corrections are made

for refractive error in experiments, small deviations may still exist. This variance

in power density influences the reported damage threshold because the amount of

energy at the exposed area of the retina is different. For larger refractive errors,

the spot size on the retina increases. For example, two identical laser beams enter

two different eyes with a power of 50 microjoules. The first eye has a refractive

error of zero while the second eye has one diopter of refractive error. According

to Schulmeister, the first eye with near perfect vision would place the laser beam

into a tight spot on the retina with a diameter of 10 micrometers. The second eye

with the one diopter error would negatively influence propagation and yield a 127

micrometer spot at the retina. The resulting power density is 161 times lower for

the eye with the refractive error. This is indicative of the extremely high impact

biological variability has on damage threshold variance.

It is important to note that the one diopter of error is the average refractive

error for the human young adult population [19, 8]. Refractive error has many causes

including poorly shaped or sized eyeballs, corneas, and lenses. The eye works to

accommodate for this error by adjusting the shape of the crystalline lens using small

muscle formations within the eye. The amount of accommodation is approximately

one diopter in refractive power [24]. Therefore, the human eye, on average, can

adjust and compensate for the average refractive error.
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Statistical distributions of refractive error show an approximately normal be-

havior with a mean value of approximately -1 and standard deviations between 1

and 2 diopters [19, 8]. This information could be used to develop an approximation

of spot size based on the distribution of refractive error but it may lead to problems.

Chromatic aberrations, a term used to describe the wavelength dependence of light

propagation in the eye, must be accounted for in any model developed to simulate

laser propagation [27]. Therefore, a more geometry and wavelength specific model

for propagation is required.

Ray tracing models based on complex Gaussian beam propagation may be

used to predict spot size on the retina for a given set of input beam parameters. The

method uses spatial dimensions for the ocular system components and their indices of

refraction to determine the behavior of laser propagation. The method developed by

Rockwell et al.[27] is shown to predict spot size and account for chromatic aberration.

The study was validated against fiber probe and laser induced breakdown techniques.

The input needed for the Rockwell model included specific eye measurements such

as lens and cornea radii of curvature, vitreous and anterior chamber depths, and lens

and cornea thickness.

The summary statistics for mean and standard deviation data of ocular sys-

tem components is readily available in literature. Studies such as a bridge study

conducted at the Air Force Research Laboratory to investigate alternative animal

models for research [26] included not only these parameters for humans, but for two

other animal species as well. These studies report the specific eye measurements

needed for the ray tracing model previously mentioned. However, in order to create

a complete and sound statistical model, one must have all the information available

about each individual component’s means and standard deviations, as well as the

covariance structure among the sample data. The covariance structure describes the

relationships of one component with the others. Therefore, a random draw from a

statistical distribution of lens thickness will intelligently influence the random draw
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from the statistical distribution of the lens’ anterior and posterior radii of curvature.

This type of relationship exists in the covariance structure.

In 2011, Rozema et al.[29] published the results of a model eye based on the

complete covariance structure of 127 human eyes. The resulting model matched

the true human measurements with excellent agreement and reproduced a similar

covariance structure. The Rozema data and method is selected as the foundation

for the development of the statistical eye model in this research. The model is

slightly modified to improve the influence of missing data through some mathematical

methods originating in financial applications.

The statistical eye model is sampled 50,000 times to provide input to the ray

trace model. The results for input beam wavelength and beam diameter generate

empirical cumulative distribution functions for retinal spot size. The model output

from this research for a 514-nanometer beam with a 3-millimeter pupil is a 124

micrometer spot size diameter. This showed agreement with Schulmeister’s reported

127 micrometer spot size diameter. Both of these are based on an average refractive

error of -1 diopter.

Once the laser energy has propagated through the eye, it reaches the retinal

surface. Here it must be absorbed, reflected, or transmitted. The absorption of

photons from the laser beam induces a temperature rise. The temperature rise is

one of the critical components in laser-tissue interaction (LTI) simulations. The time-

dependent photon absorption as distributed across a discrete grid is known as the

source term used in solving the heat equation. The solution of the heat equation in

spatial and temporal domains defines a time-temperature profile for any given point

in the simulation space. A rate process model then integrates temperature over time

using normalized parameters of the Arrhenius Integral to estimate whether or not

damage has occurred.

LTI simulations such as BTEC Thermal Solver [15] are deterministic in nature

with respect to estimating thermal rise and damage. This study utilized the BTEC
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code because of availability and ease of configuration and its continued validation

against experimental results [4]. Each unique BTEC input results in a unique output.

In order to use the model in a probabilistic fashion, the input parameters are sampled

from a probability distribution and results linked to the probability of observing the

input configuration. If an input is selected by choosing the 50th-percentile of data,

the resulting damage threshold prediction is considered the ED50. This methodology

is the foundation of using a probabilistic model to predict the laser beam spot size

on the retina. Other parameters such as thermal properties and physical dimensions

are also configurable to meet the user’s needs.

The BTEC Thermal Model’s deterministic nature enables the simulation to

precisely and accurate define any input parameters. An input beam diameter and

power are used in the solution as exact parameters. In the real experimental world,

these factors have some inherent error due to measurement capability. By fixing

parameters such as these, only those parameters intended to vary will affect the

outcome. This enables one to study the effects of one or more input variables in

order to examine individual effects on the solution space.

One limitation of BTEC is the inability to model non-uniform tissue layers.

Each layer used in the model is assumed to be a spatially averaged mass with a

resolution on the order of micrometers. In retinal simulations, for example, cells on

the retinal layer are significantly different than in the neighboring layers but cannot

be distinguished within the uniform layer. Since most cases of this research effort

will examine relatively large areas of the retinal, averaging is not predicted to have

substantial impact on the results.

The following chapters document stand-alone research efforts examining how

to use the information presented here to adapt existing models to build probabilistic

models for laser damage to the human retina. Chapter 3 was presented to the Inter-

national Society for Optics and Photonics at the 2012 Photonics West Conference.

It generated interest from international colleges, representatives from the Depart-
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ment of Defense, and the United States Food and Drug Administration. Each of

these organizations has a vested interest in damage threshold research and it is my

wish that this thesis provides a strong foundation for developing a new approach to

research and system development methodologies.
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3. An Analysis of the Influences of Biological Variance,

Measurement Error, and Uncertainty on Retinal Photothermal

Damage Threshold Studies

This chapter is the conference paper presented at SPIE Photonics West, BiOS, at San

Francisco, California, on January 24, 2012. It is currently in review for publication

in the proceedings as paper 8221-40 [42]. Publication date is estimated to be March

2012.

3.1 Abstract

Safe exposure limits for directed energy sources are derived from a compila-

tion of known injury thresholds taken primarily from animal models and simulation

data. The summary statistics for these experiments are given as exposure levels rep-

resenting a 50% probability of injury, or ED50, and associated variance. We examine

biological variance in focal geometries and thermal properties and the influence each

has in single-pulse ED50 threshold studies for 514-, 694-, and 1064-nanometer laser

exposures in the thermal damage time domain. Damage threshold is defined to be

the amount of energy required for a retinal burn on at least one retinal pigment

epithelium (RPE) cell measuring approximately 10 microns in diameter. Better un-

derstanding of experimental variance will allow for more accurate safety buffers for

exposure limits and improve directed energy research methodology.

3.2 Introduction

Developing directed energy systems requires an understanding of how each type

of energy source affects an exposed materiel, either living or non-living. Directed

energy effects on living tissues of persons or animals are often complex due to the

non-uniformities between regions of the body and within the populations as a whole.

Determining the degree of influence of experimental error, uncertainty, and biological
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variance requires a great deal of experimental research as well as modeling and

simulation of these systems.

Laser-tissue interaction (LTI) modeling and simulation helps to supplement

costly experiments on living tissues and employs the use of deterministic, first-

priciples, multiphysics numerical simulations to predict how tissues exposed to di-

rected energy respond. In the case of retinal damage threshold research, LTI models

supplement studies using enucleated eyes or animal models in order to provide a less

costly means of estimating the effects of a laser exposure on these tissues. The model

estimates interaction effects such as energy absorption, scattering, and transmission

through a medium and uses this as an input to a thermal damage model.

Biological variance, error, uncertainty, and laser exposure parameters that

include wavelength and exposure duration are critically influential factors in LTI.

Rather than a simple point estimate representing a damage threshold, a range of

exposure levels are required to express what level of energy, or dose, will produce a

given response such as a burn, lesion, or hemmorhage. Therefore, any attempt to

establish safe exposure limits should account for these factors. For years, researchers

examined families of exposure types classified into damage mechanisms, time de-

pendency, wavelength, beam characteristics, and others, to predict each family’s

distribution of damage. Increased sample size, improved equipment precision, and

accurate experimental design improve the quality of these results; however, biological

differences within a population will always remain a significant source of threshold

variance. This research examines how variance in an eye’s focal geometries and

thermal parameters impact damage thresholds of the retina.

3.3 Background

Statistical variance in threshold studies plays a significant role in directed en-

ergy biological effects, or bioeffects research. Generally, inter- and intra-subject

variations guarantee a range of damage threshold values rather than a single exper-
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imental endpoint. These ranges are reported using descriptive statistics, typically a

mean and a measure of variance that describes the spread of the data. Determining

the degree of influence for each source of variance in damage threshold studies is a

crucial factor in determining a population’s damage threshold characteristics. Un-

derstanding the root causes of threshold variance is important in the development

of safe exposure limits because many aspects used in their determination is based

on a probabilistic approach. Optical, thermal, geometric, and physical properties of

tissues are sources of biological variance considered in this research.

Most damage threshold studies dating back to the mid-20th century use probit

analysis[9] to quantify the sample variance, experimental uncertainty, and measure-

ment error, in damage threshold studies as a combined variance metric. Probit was

developed “to help biologists whose acquaintance with statistical method was slight

and who were naturally hesitant to undertake calculations that seemed difficult (and)

laborious”. One of its earliest applications was in toxicology lethality studies to quan-

tify a binary response, either lethal or non-lethal, within a population such as insects

or rats. In directed energy research, probit analysis assumes a log-normal distribu-

tion of a dose level required to elicit a binary response, damage or no damage, and

translates the data into an empirical cumulative distribution function (CDF). The

most important results of probit analysis are the empirical 50th-percentile, ED50,

and the probit slope, a variance measure determined by the relationship between

the ED50 value and either the 16th- or 84th-percentiles. The central limit theorem

guarantees that increasing the sample population through experiments with similar

exposure parameters will ultimately determine the true population mean damage

threshold but any sources of inherent variance prohibit convergence to a single dam-

age threshold for the entire population.

Uncertainty, error, and variance come from many sources. Researchers may oc-

casionally make observation errors when attempting to classify a result as a binary

damage response when examining a 10-µm diameter lesion on the retina through a
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fundus camera. Power density is recorded by a device with imperfect precision. Bi-

ological variance between subjects may also create a condition where the same laser

exposure to one subject or location creates an observable lesion but has no response

with another. As damage threshold research matures with time, methodology and

quality of results improves. The observers will better view the same microscopic

lesion that was previously unrecognized through the use of better equipment. Fu-

ture measurement errors will be reduced using more advanced equipment. However,

biological variance will still remain a factor and must be quantified.

Developing safe exposure limits for lasers is one of many real world applications

of damage threshold studies. The ANSI Z136 [1] series provides maximum permissi-

ble exposure (MPE) limits for lasers for industry, education, and military application

and research. The military shows its appreciation for directed energy systems by its

vast proliferation of laser target designators, range finding equipment, non-lethal

laser glare applications, and munitions guidance systems as well as the relatively

large annual budget allocation to future technologies programs under the direction

of the Defense Advanced Research Projects Agency (DARPA)[7]. Higher powered

laser systems offer a potentially new class of weapons enabling line-of-sight at the

speed-of-light engagements with a potentially lower degree of collateral effects com-

pared to traditional kinetic munitions. However, development of such systems and

the quantification of their collateral effects relies on the understanding of biological

responses.

In order to determine a safe exposure limit, it is vital to understand the proba-

bility distribution of damage thresholds, especially in the lower tails of the empirical

CDF. Current MPE limits are typically defined to be a fraction of the experimen-

tally determined ED50 values. This fractional safety factor takes into account the

experimental uncertainty, error, and variance. However, due to the spread of the

experimental data, there may exist some cases where a fixed fraction of ED50 for a

given exposure may lie uncomfortably close to the empirical CDF’s lower tails due
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to the influence of uncertainty, error, or variance. In other cases, the spread of data

may be much more compact and the MPE limit can be unnecessarily restrictive.

Modern research[31, 23] is beginning to stray from this classical approach and seek

alternative methods of modeling variance in lieu of a fixed fractional safety mar-

gin. It is imperative that statistical methods used in safety research are “difficult

and laborious” to carefully place bounds on the degree of influence for each inde-

pendent source of variance in order to better quantify risk for safe exposure limits

research. Probabilistic risk modeling is an associated application that has already

begun utilizing alternative approaches[2, 31].

Each source of variance must be quantified in order to create a useful proba-

bilistic model but each source may require multiple studies to accomplish this task.

Retinal ED50 studies are often cost prohibitive and may only address one of many

unknowns at a time. In 1999, Zuclich et al.[43] reported on the relationship between

spot size and damage threshold. Kennedy and Zuclich [20] reported in 2004 on the

variation in retinal image size but varied beam profile characteristics. In 2007, Lund

et al.[21] examined a similar relationship but varied wavelength. Follow-on stud-

ies such as these bolster the body of bioeffects research because they decrease the

uncertainty in some areas, increase the overall sample size, and provide more ex-

periemental results. Furthermore, they introduce and help to quantify new sources

of variance such as the influence of subject-to-subject variability with the new sam-

ples taken from a population. By performing these studies over time, researchers can

reduce the influence of threshold variance from uncertainties or errors and identify

those biological influences that may explain a true distribution of damage thresholds

for a given population.

As an illustrative example, consider a single RPE cell in a controlled water

bath, or in vitro latin for in glass, that is exposed to a laser such that power density,

wavelength, and exposure duration are known with infinite precision. The single cell

thermal damage threshold is the exposure level required to increase the temperature

3-5



of the cell high enough to cause an observable, thermally-induced protein denatu-

ration. The empirical CDF relating the probability of damage to laser power based

only on this single exposure is a step function having a value of zero for powers lower

than the threshold and a one for powers greater than or equal to the threshold.

Repeating the experiment described above using RPE cells drawn from a sam-

ple population will result in a range of powers and a binary response of either “dam-

age” or “no damage” for each. Assuming each of the other experimental parameters

are constant, the population variance creates a measured spread of the data. This set

of data having a mean and measure of variance is used to create a 50% probability

of damage estimate and associated confidence interval.

In the case of in vivo, or within the living, experiments, optical, physical,

thermal, and geometric properties impact laser energy propagating through the eye.

Variation in the geometry of the eye greatly impacts this propagation and, ultimately,

the laser spot size on the retina. This in turn affects the reported power density at

the retinal plane. Thermal properties of the retina such as conductivity and specific

heat also vary[6]. As these additional 1, 2, ..., n additional sources of variance are

introduced, what was originally a random variable with a mean and variance becomes

a random variable from a probability distribution determined by the convolution of

n random factors and their individual distributions. Such a distribution may cause

the damage threshold to vary greatly so it is important to quantify each of the most

dominant factors that influence threshold. Figure 3.1 illustrates the relationship

between a notional 1, 2, 3, and n-factor variance model.

Human experimentation is the ideal approach for determining human safe ex-

posure limits but it has only been conducted in a relatively few cases such as those

where the enucleation of the eye is required [37]. Since threshold studies require

many exposures for each combination of wavelength, exposure time, spot size, pulse

train and other determining factors, a means to study an optical system similar to

the human eye is required. The primary method of finding damage thresholds for the
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Figure 3.1 Dose Response Curve Showing Damage Thresholds for Tissue Samples.
Line A shows a deterministic response (no unknown factors) threshold
at 100 mJ. Lines B, C, and D show a 1-, 2-, and n-factor variance model,
respectively, each with an increasingly skewed response curve (empirical
CDF) and changing mean threshold.

living eye is the use of an animal model under the strict supervision of an AAALAC

accredited laboratory. The Indian-origin rhesus monkey (Macaca mulatta) has been

the primary animal model used for testing retina thresholds for nearly 50 years. How-

ever, it possesses a slightly smaller eye than a human and the focal geometries are

somewhat different, yielding a decrease in the mean threshold ED50. With respect

to animal models such as the rhesus monkey, differences between these surrogates

and humans can create a shift in the mean threshold. Furthermore, rhesus eyes are

much smaller and vary much less with respect to size than the human eye [26] and

suggest not only a shift in the mean, but a more compact data spread and empirical

CDF. The consequences of such a relationship suggest that assumptions used when

predicting human thresholds based solely on the rhesus model must be carefully

evaluated. Although Rongjia et al.[28] have published some results stating that the
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mean damage threshold values for rhesus-to-human are approximately 1:1.765, this

can only be applied to the ED50 because other values such as the 10% threshold, or

ED10, are not a simple linear transformation given the more compact CDF.

Although animal subjects are much more accessible than human subjects, they

are very costly. In an effort to reduce costs through innovation, scientists often choose

to utilize computer modeling and simulation in lieu of experiments. Computer simu-

lations such as the Buffington-Thomas-Edwards-Clark Thermal Model (BTEC) [15]

or COMSOL, a commercially available multiphysics tool, are used in place of these

physical experiments. These simulations help to fill in the gaps where experimental

data is not available. Simulations also assist in planning real world experiments by

determining which new data may be valuable, helping to save incredible amounts of

time and money. BTEC is frequently validated by experimental work and is used to

generate derivative models[4]. Built upon first principles physics simulations, BTEC

uses a variety of propagation methods to distribute directed energy throughout a

system, typically the skin or the eye, where its absorption, reflection, scatter, or

transmission is recorded over a specified time period. The profile of energy within a

given one- or two-dimensional system is known as the source term for the heat equa-

tion. This is used to directly determine damage based on the induced temperature

profile over time using an Arrhenius rate process model. This research effort will

employ the BTEC thermal model due its availability through cooperation with the

Air Force Research Laboratory.

Even with the best tools available, modeling the eye is a complex endeavor.

The nature of the eye is to accommodate vision and to focus light onto the retina

in a small area known as the macula, where the density of photoreceptors is highest

and therefore enables the most precise visual response. Proper calibration of the

visual system ensures that light reaches these photoreceptors at the right angle and

focal point. Small defects may exist within the vision system but the human eye can

actively adapt to allow for small deviations to be within visual tolerance. A well-
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formed, or emmetropic, young adult eye averages 23.5 mm [26, 29] allowing light

reflected from an object to focus onto the retina. Conditions of myopia (nearsight-

edness) and hyperopia (farsightedness), collectively known as ametropia, adversely

affect the focus of the retinal image. These conditions are common with varying

degrees and are caused by imperfections in the focal geometry of the eye. As an

infant, the eye is disproportionately small causing light rays to be directed behind

the retinal plane by the cornea and lens causing axial hyperopia. As the body grows

into adulthood, usually the eye and its components grow relatively more proportion-

ate, pushing the retinal plane back to meet the natural focus. Eye growth begins to

slow as adulthood is reached, but it does not cease. Later in life, the retinal plane

will extend beyond the focal point of light causing axial myopia. This may explain

infants cannot see something that is too close to their face and may also explain why

older humans must hold text closer to their eyes to see it. Although natural aging

and growth processes can create conditions of hyperopia and myopia, a significant

sub-population exhibits these conditions throughout life due to out of tolerance focal

geometries of the cornea and anterior portions of the vision system. In contrast to

axial ametropia, refractive ametropia is a condition where the poorly shaped cornea

creates a focal point in front of or behind the natural retina plane.

Another significant refractive error is astigmatism. This refractive error is

caused by a poorly-shaped cornea or globe, creating a change in the focal point on

the retina. Astigmatism is a common occurrence and is often coupled with myopia

and hyperopia further impacting the focus on the retina.

The degree to which the visual system is within tolerance, enabling uncorrected

sight, is often described by refractive error. Eyeglasses and contact lenses are able to

correct for refractive errors by reforming the light entering into the cornea, correcting

the focal position on the retina. In recent years, surgery on the cornea itself has been

a means to provide vision correction to those suffering varying degrees of ammetropia.
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Figure 3.2 Graphic showing effects of focal length on retinal spot size due to hy-
peropia (left) and myopia (right) compared to normal emmetropic eye
(center). The change in focal length causes refractive error shifting the
focal point of the light passing through to the retina.

Another source of biological variance of the eye is the quality and character-

istics of the crystalline lens. The small variances in the shape and size can greatly

influence the spot size on the retina while the transmission problems of the lens

such as cataracts can create loss in the total amount of light reaching the retina.

Furthermore, the lens is an adaptive part of the optical system making it compli-

cated to model. The optical system forces the lens to change shape as vision must

accommodate to view objects not easily seen with a relaxed lens. Additionally, the

non-uniform refractive index of the lens effects light propagation. Lenses are often

modeled as having a uniform index that is an overall refractive power but some mod-

eling research utilizes a gradient index, continuously changing from the anterior to

the posterior surfaces of the lens. This research effort varies the size and shape of a

relaxed lens and assumes a uniform refractive index using the average power of the

lens. Accommodation and gradient indices as well as lens defects may also prove to

be substantial influences but are beyond the scope of this paper.

Refractive error corrections for myopia and hyperopia are measured in diopters,

a measurement unit of the inverse focal length (1/m) with a positive or negative

characteristic. The human eye can actively adjust to small refractive errors in its

depth-of-focus within ±1 diopters [24]. Beyond this range, corrections are required

to to improve vision quality. Someone with a case of nearsightedness will require a

negative refractive power correction using a concave lens in order to bring the focal
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point of light properly and within tolerance into the retinal plane. On the other

hand, someone with hyperopia will require a corrective convex lens with a positive

refractive power.

The effects of refractive errors on retinal spot size have also been examined[31].

However, determining the source of refractive error in order to better predict spot

size can be problematic. In order to examine how these conditions impact damage

thresholds due to the spot size variations they induce, probability distributions of

these disorders must be characterized for a given population. Previous studies have

characterized the distribution of refractive errors[19, 8] and it may be possible to

generalize the distribution of spot size given the effect and distributions of refractive

error. However, a better alternative to this would be to model the eye using data

collected from a sample population and then use the descriptive statistics and co-

variance data to generate a random sample of eyes with correlating geometries and

propagation related characteristics.

Rockwell et al.[27] have developed a model that accepts specific geometries and

other optical characteristics and uses them to determine the wavelength dependency

of spot size based on chromatic aberration, a term used to describe the shifting of

the focus of visible and invisible light along the axis of the eye. In this research,

optical and physical parameters from an eye are used in a ray matrix propagator

to determine the spot size on the retina given an input corneal spot size and wave-

length. Using this method coupled with artificial eye data for a sample population,

a distribution of spot size on the retina may be achieved. This approach is better

than assuming a distribution of spot size based solely on refractive error because of

the numerous sources and difficulty in quantifying their impacts. Rozema et al.[29]

collected measurements from a population of human eyes and reported on the cor-

relations between the optical components that provide the input variates for such a

model. Their efforts were focused on improving statistical eye models in general but
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only required minimal pre-processing to create a population distribution for input

into the Rockwell model.

It is our hypothesis that the distribution of refractive errors across a given

population is the foundation for the most influential factor of biological variance

impacting light propagating and focusing on the retinal plane due to the impact on

the size of the spot in which the laser energy is absorbed. Thermal properties are

also examined as an additional source of variance.

3.4 Method

The primary focus of this research is to quantify the influence of focal geom-

etry and thermal property variance in LTI damage threshold studies. Numerical

simulations are performed using a validated artificial population of eyes in order

to determine the empirical CDF slopes and contrast each with the safety factor

built into the safe exposure limits. Other sources of variance such as power density

measurement accuracy and precision should be considered a linear influence. For ex-

ample, if the measured result is off by 5%, the resulting threshold values are shifted

linearly in the direction of error.

Focal geometries of the eye are extremely influential to ED50 thresholds due to

the relationship of spot size diameter to area. For a one-percent change in spot size

diameter, there exists a two-percent change in area for which to deposit a constant

amount of laser energy. A 10% diameter increase will yield a 21% difference in area,

and so forth. The focusing of light onto the retina is extremely sensitive to the

shapes, thicknesses, and relative positions of the optical system components. Two

methods were evaluated to estimate spot sizes and distributions among a population.

The first method examines the findings of Schulmeister et al [31] with regards

to spot size’s relationship to refractive error. This method involves researching prob-

ability distributions of refractive error across populations. By using these population

distributions, retinal spot sizes are determined by an approximation relating size to
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refractive error for predetermined population percentiles. These spot sizes could then

be used as inputs for simulation to determine the kth-percentile damage threshold for

a given laser exposure. However, refractive errors are caused by many factors such

as astigmatic conditions, axial length variations, and corneal surface imperfections,

that may exist independently of each other within the same eye. Therefore, spot

sizes could not easily be determined using a one-to-one refractive error-to-spot size

assumption so an alternative approach is necessary.

The second approach utilizes propagating a given laser beam of a specific wave-

length and beam characteristics through the optical system onto the retina. The

propagation method used by Rockwell et al.[27] is implemented using an input vec-

tor drawn from a covarying probability distribution of parameters taken from human

eyes. This method accounts for chromatic aberrations and determines spot size on

the retina as a function of wavelength. The ray matrix propagator used in this

method accepts a Gaussian beam input and calculates the output beam based on

the refractive indices, radii of curvature, and distance of propagation. The Rock-

well model was provided courtesy of the Air Force Research Laboratory’s Human

Effectiveness Directorate, Directed Energy Division, Optical Radiation Branch, Fort

Sam Houston, Texas. The original model was built using MathCAD and ported to

MATLAB for ease of integration with the other components of this modeling effort.

The Rockwell model uses the complex Gaussian beam propagation parameter

to calculate the spot sizes in and out of each surface from the cornea to the retina.

This relationship is defined by:

1

qi
=

1

R(z)
+ i

λ

πw2(z)
(3.1)

qf =
Aqi +B

Cqi +D
(3.2)
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where z is the propagation distance along the axis, qi and qf are the complex beam

parameters in and out of a surface, respectively, and R(z), w(z) are the radius of

curvature and spot size (radius), respectively. A,B,C, and D come from the ray

matrix as

A B

C D

 =

1 d

0 1

 (3.3)

for propagation through a medium and

A B

C D

 =

 1 0

n− n′

Rn′
n

n′

 (3.4)

for propagation at a medium change. The values n and n′ are the prior and post

medium refractive indices and R is the radius of curvature of the refracting surface.

Propagation for 3- and 6-millimeter Gaussian beams shown in Figure 3.3.

Figure 3.3 Rockwell ABCD model output demonstrating propagation for 6- and
3-mm beams at 1064-nm.
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These matrices require propagation distance, radii of curvature, and refractive

indices for each component within the optical system. Rockwell published wave-

length dependencies for the refractive index values used here. However, determining

the distribution for the other inputs required the recreation of a population using a

vector of means and a correlation or covariance matrix. These are required in order

to determine how a factor such as eye axial length is related to other factors such

as lens thickness, as these and others cannot be assumed to be independent of each

other.

The Rockwell ray trace method is used in conjunction with the eye data

Rozema et al.[29] collected from 127 subjects. Raw data provided by Dr. Rozema

helped to ensure each measured parameter comes from a normal or near-normal

probability distribution and is reported with covariance relationships. The origi-

nal covariance matrix is modified to account for missing data and for the addition of

other parameters required by the Rockwell model not originally reported by Rozema.

The missing values create a non-positive definite matrix, a problem for the MATLAB

model developed to create multivariate random input vectors with covariance for the

Rockwell model. Therefore, the covariance matrix is adjusted slightly. Rozema sug-

gests augmenting the matrix by replacing the zero values from missing data entries

with an arbitrarily small value, ε = 10−5. While these values are small, relative

scaling may still lead to problems.

The process to create a best approximation of indefinite matrices due to missing

data is described by Wang and Liu[38]. By adding a numerically small diagonal

matrix, E to the covariance matrix, Σ, a new positive-definite or semi-definite matrix,

Σ̃, is formed. The adjustment is known to introduce bias so it is important to

minimize the values on the diagonal of the matrix, E. Higham[14] describes this

process for dealing with non-positive definite matrices in financial applications. This

approach should be a slightly more optimized approach than the method of replacing

all zero values of the original matrix with ε = 10−5.
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The correlation matrix, R, calculated from the original covariance matrix, Σ,

is chosen in this effort due to scaling issues and correlation information relating to

other parameters. Following the process described by Higham to optimize the matrix

E as to minimize the introduction of bias, spectral decomposition is performed on

the non-positive definite correlation matrix, R = QΛQT , where Q is an orthogonal

matrix and Λ is a diagonal matrix composed of the elements λii, representative of

the eigenvalues of the matrix, R. Then, let D be a diagonal matrix with elements

dii = max(0, λii). This will replace all negative elements of Λ with 0. Next, create

the modified correlation matrix R̃ = QDQT . R̃, is the closest semi-positive approx-

imation of the original correlation matrix, R, with respect to the Frobenius norm,

a measure of matrix influence. The matrix, E, can be determined by E = R̃ − R.

This optimized matrix is now a semi-positive definite or positive definite matrix

acceptable for this model.

Another source of biological variance considered in this study is the variation

in thermal properties of the retina and the influence on damage thresholds. Full

population distributions of these are not yet readily available in literature so the

variation here will be modeled using two sets of thermal properties based on the

findings of Mainster and DeMarco[6] to determine the influence on damage threshold.

The Mainster properties assume the eye possesses the same thermal conductivity

and specific heat as water. DeMarco proposed these properties do not accurately

represent the eye and chose to use the parameters of gray matter based on similarities

in the high concentration of neural cell bodies. These two slightly opposing views

provide approximately a 10% fixed variation for this study.

The BTEC thermal model is used to model exposures to the retina using

exposure durations of 0.1 and 1.0 second at 514-, 694-, and 1064-nm, and compared to

similar experimental data for validation. Although the aversion response to a bright

visible wavelength laser takes generally 0.25 seconds, a whole second is modeled to

capture time dependency effects. Furthermore, the 1064-nm near-infrared exposure
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Table 3.1 Table of Mainster and DeMarco thermal properties for ocular tissues.

does not illicit a comparable reaction because the laser energy is not visible, requiring

a longer aversion response time. Simulation parameters are based off Mainster eye

model (except where DeMarco parameters are explicitly noted) using the Arrhenius

Rate Process Model

Ω(z, r, t) = A

∫ t

0

exp

−Ea

RT (z, r, t) dt (3.5)

where A an Ea are the tissue-dependent constant of integration and activation en-

ergy, respectively, R is the gas constant (8.314J/◦Kmol), T is the temperature (◦K)

as a function of z, r and time, and Ω is the value of the normalized Arrhenius

damage integral. In a one-dimensional simulation, the source term is determined

as a spatially averaged irradiance (W/cm2) along the z-axis. In a two-dimensional

simulation, the source term is solved using the cylindrical coordinate space in the

propagation direction, z, and radial direction, r, using a user-defined beam profile.

3-17



Figure 3.4 shows the three-dimensional simulation space using a two-dimensional

simulation with radial symmetry. Damage is predicted in the numerical simulation

when the normalized Arrhenius damage integral is greater than 1. In the case of

a threshold search simulation, convergence on the damage threshold is defined to

be the emitter power required for the damage integral to reach 1 ± ε, where ε is a

user-defined percentile tolerance parameter defined to be 0.03 in this study.

Simulated exposure thresholds are calculated at the retina and must be trans-

formed to account for transmission loss in order to be compared to similar experimen-

tal data for validation using findings of Maher[22]. Furthermore, since this modeling

effort is to account for human variance, experimental data must also be normalized

to account for rhesus-to-human variance using a factor of 1.765 [28]. Analysis of the

results to show the influence of varying factors follows.

Figure 3.4 Figure depicting retinal layering system used in BTEC Thermal Model
simulations. Grid resolution and sizing may be varied dependent on
input beam characteristics.

3.5 Results

MATLAB is used to create 50,000 eyes based on revised covariance data. The

critical input parameters are verified to come from normal or near-normal distribu-

tions. Due to the population and variates, there are some cases (generally < 3%) in

which the retina spot size is smaller than the assumed diffraction limited spot size
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of 10-µm and are discarded. Their probability is redistributed over the remaining

variates. The remaining population is compared to the Rozema results with excel-

lent agreement (Table 3.2). These results are also compared to a mean spot size

of 124-µm for visible light[31] representative of a -1 diopter mean refractive error

for human eyes[29](model predicts a mean spot size of 127-µm). The results are

processed with the Rockwell ABCD ray propagation code to determine spot size and

distribution of spot size (Figure 3.5).

Table 3.2 Comparison of Rozema[29] data, Rozema Model, and proposed model.
Proposed model output matches data and previously published results.

Computer simulations using the BTEC thermal model are used to examine how

the effects of spot size impact damage thresholds upon the retina. Retinal spot sizes

are taken from the empirical cumulative distribution function of the eye model results
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Figure 3.5 Graphic showing effects of wavelength on spot size as a function of axial
depth (left) and the CDF of spot size as determined by Rockwell ray
trace model for a 3-mm, 514-nm laser exposure (right).

corresponding to the 1-, 5-, 10-, 16-, 25-, 50-, 75-, 84-, 90-, 95-, and 99-percentiles.

The BTEC thermal model predicts damage thresholds corresponding to these retinal

image sizes and the resulting thresholds are mapped to a cumulative distribution

function to estimate the probability of damage based on biological variance in eye

focal geometries, wavelength, and exposure duration. Results are compared to trends

in experimental data normalized for transmission and species differences (Figure 3.6).

Table 3.3 Table of 0.1- and 1.0-second results. Higher probit slope values indicate
smaller variance in threshold due to biological variance. MDLS (Mini-
mum Diffraction Limited Spot Size) = 10 µm
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Figure 3.6 Graphic showing comparison of BTEC Thermal Model and experimen-
tal damage threshold results, raw data as well as data corrected for
species variation and transmission loss. Slightly higher experimental
threshold most likely due to laser beam scattering, rhesus to human
conversion factor, or effects of anesthesia on subjects.

This same methodology is used to predict shifts in the damage thresholds in

the cases of variance in thermal properties of the retina. The Mainster model uses

thermal properties of water to simulate the retina and neighboring tissues. The

DeMarco Model contrasts this approach by using the thermal properties of brain

gray matter since both tissues are highly concentrated with neural cell bodies. Table

3.1 displays values used in simulation and Table 3.4 shows these results.

Table 3.4 Results from 694-nm, 0.1-s and 1.0-s simulations using both Mainster
and DeMarco thermal properties. In both cases, thermal parameter vari-
ation of approximately 10% yields a similar shift in damage threshold.
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Figure 3.7 BTEC thermal model results for 6-mm beam at the cornea using only
biological variance in focal geometry for 100-ms and 1-s exposures. Ver-
tical lines represent Maximum Permissible Exposure (MPE) Limits for
comparison.

3.6 Discussion

The results for threshold predictions are compared to experimental data. For

validation, each simulated threshold is normalized to determine power at the cornea

using a wavelength-dependent transmission loss coefficient. If an exposure is deter-

mined to have a threshold of 100µJ but lost 10% during ocular propagation due to

transmission loss, the normalized simulated threshold at the cornea is 110µJ . The

experimental results, most often reported from experiments involving the Indian rhe-

sus monkey, are also normalized as described by Rongjia[28]. In general, simulated

thresholds are slightly lower than experimentally determined threshold values by a

factor of about two to three. The higher experimental thresholds may be attributed

to scattering of the laser energy by ocular media, anesthesia effects, or other param-

eters of simulation as well as interspecies differences not accounted for by a simple

conversion factor published by Rongjia. However, the spread of data is the focus of

this discussion.

The predicted damage threshold results show a sizeable threshold spread based

solely on biological variance in focal geometries. As mentioned previously, a signifi-

cant amount of retinal damage threshold studies fuels safety standards research. It is
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therefore critical to compare current safe exposure limits to these modeled threshold

values.

Table 3.5 Simulation predicted damage thresholds compared to current safe expo-
sure limits for a 3- and 6-mm Gaussian beam. Table values are given as
ratio of threshold/exposure limit. MDLS (Minimum Diffraction Limited
Spot Size) = 10 µm

Safe exposure limits are generalized to be a fraction of the experimentally

determined ED50 values. The simulated thresholds determined by varying focal

geometries generally fall lower than those found in experimental work by a factor

of about two to three. However, it must be noted that larger beams at shorter

wavelengths are uncomfortably close to existing safe exposure limits even considering

the slight difference between the simulated and experimental thresholds. From Table

3.3, the simulated damage threshold for a 6-mm, 514-nm exposure at 0.1-seconds

based on a 50% probability of occurrence is 1669 microjoules. For the same exposure,

the 1% probability of occurrence threshold is 104 microjoules. This is approximately

one-sixteenth of the simulated ED50 value. On the other hand, the simulated 3-

mm, 694-nm exposures at 1-second is 10,886 microjoules. The 1% probability of

occurrence threshold is estimated to be 1,447 microjoules, one-seventh of the 50%

threshold. While these thresholds may need to be adjusted somewhat to match

experimental data points, it indicates that a fixed fractional safety cushion may

not be appropriate for all wavelengths and exposure durations. Furthermore, these

results are based on biological variance of the focal geometries and nothing more.

By varying other non-convarying (independent) factors, the tails of the distribution

would be further skewed. Therefore, it is important that each source of variance
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is understood and well-modeled before safe exposure limits can be determined to

minimize over- and underestimation of risk. Such errors can create unreasonably

high or low exposure limits thereby creating a chance of injury or simply impeding

laser research and development efforts.

Variance in thermal properties of the retina also affected thresholds but on a

smaller scale. Specific heat is measured in terms of
J

g ×◦ C
while thermal conductiv-

ity is given by
J

s× cm×◦ C
. The Arrhenius rate process model (Eqn 3.5) predicts

damage based on a given time-temperature profile. A predicted threshold is given in

terms of Joules, Joules per second (Watts), Joules per unit area (radiant exposure),

or Watts per unit area (irradiance). The specific heat is related to threshold in a

strictly one-to-one function since a 10% decrease in the amount of energy required to

change the time-temperature profile creates a 10% lower damage threshold. Thermal

conductivity introduces a time-dependency so this may be more influential for some

exposure times than others. However, the results of this study indicate a negligible

difference between the threshold percentages of the Mainster and DeMarco models

at 0.1- and 1.0-second exposure durations.

3.7 Conclusion

Our findings support that focal geometry and, to a lesser degree, thermal prop-

erty variance are influential in damage threshold studies. An alternative approach to

using a fractional safety factor based on ED50 values for determining safe exposure

limits is to determine the underlying distributions of thresholds of factors relevant to

damage thresholds. Models such as this may be refined to capture more parameters

to provide first-principles models a better input configuration in order to produce

more reliable results. The result is a deterministic model applied to a probability

distribution realized from a population.

It is clear from these results that the degree of spread of damage thresholds

across a population varies with wavelength and exposure duration. Although it
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may be difficult to characterize each distribution by each permutation of wavelength

and exposure time, it is critical for quality safe exposure limits. Probabilistic risk

applications could use this approach to describe an exposure as having a Pth percent

probability of injuring a bystander.

In preparing for this paper, we came across other biological factors to consider

for retinal damage threshold modeling but they were rejected in order to manage

the scope of the effort. These include age, RPE cell density, and lens quality. Time-

dependency should also be considered to examine how these affect thermal and

mechanical damage thresholds. Ultraviolet wavelengths (200-400 nanometers) may

also be considered with respect to biological variance to examine how the results

change when the significance of thermal property variance is altered due to corneal

absorption.
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tance. The authors would also like to mention the assistance of Dr. James Stringham

and Mr. Gary Noojin from TASC, Inc. Their assistance and discussions helped to

form the approaches used in this research with respect to modeling the sources of

variance. Additionally, we would like to thank Dr. C. D. Clark, III, of Fort Hays

State University, Hays, Kansas, for providing input for the BTEC configuration files.

Finally, we would like to thank Dr. Jos Rozema of the Department of Ophthalmology

at the University Hospital Antwerp for providing the eye data used in his research.

A great deal of this work is based on his approach to modeling a random, covarying

vector of eye parameters and his support is greatly appreciated.
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4. Biological Variance-Based Dose Response Model for 514 to 1064

Nanometer Laser Exposures

4.1 Abstract

Emerging directed energy systems promise to provide alternative engagement

capabilities not bound by the limits of traditional kinetic munitions. However, doc-

trine for directed energy engagements largely remains under development. Further

development of this doctrine requires a more complete understanding of effectiveness,

weaponeering, and collateral effects. Collateral effects of laser systems must account

for laser-tissue interaction effects for the eyes and skin. This is a complicated effort

that requires more than a single endpoint for exposure limit due to the biological

variance of potential bystanders. This research examines a probabilistic model for

retinal damage caused by direct and indirect exposures to laser energy.

4.2 Introduction

Current and future laser systems provide scalable effectiveness across a variety

of battlefield engagement types. Every year, research yields new applications for

laser technologies that replace or supplement traditional kinetic engagement tactics

or enhance capabilities to perform missions never before carried out. Additionally,

many military operations conducted today using traditional kinetic weapons benefit

from laser technology. Low-power, man-portable systems are used to create non-

lethal glare effects to alert or deter non-combatants. Laser-kinetic hybrid systems

such as those used in some precision guidance munitions benefit from the precision

of lasers to strike targets with unprecedented accuracy. Future technologies such as

megawatt-class, aircraft-based systems have already been proven in live-fire demon-

strations to successfully destroy ballistic missiles in flight with better accuracy and

speed than a kinetic system could achieve. Future directed energy system applica-

tions will certainly exceed today’s expectations and current imaginary bounds.
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The promise of line-of-sight, speed-of-light engagements that can strike any-

thing resolvable by the optics is of high interest. The ability to disrupt a sensor

or disable a vehicle without explosive fragmentation often experienced in kinetic

engagements will reduce the probability of injuring non-combatant personnel or un-

intentionally destroying civil assets. The reduction in collateral effects of high-power

laser systems provides a subjective rationale for directed energy research. However,

for such a comparison to be made objectively, the severity of the collateral effects

for both types of engagements must be quantifiable. Kinetic weapons assess risk of

collateral effects using a risk-based approach to probability of injury due to aiming

error, fragmentation, and explosion. It is critical to determine a risk-based method

for laser systems to make an objective comparison. Dose-response models for di-

rected energy are an example of such a tool.

High-power engagements are not the only area requiring risk assessment method-

ology. Risk assessment methods will benefit the development and deployment of

low-power emitters used in glare systems. Glare systems, also known as laser daz-

zlers, are limited by maximum permissible exposure (MPE) limits and associated

nominal occular hazard distance (NOHD) that were developed for the laboratory

and industry, not for the combat environment. The MPE is based on analysis meth-

ods that combine all statistical variance from experimental work into a safety factor

high enough to eliminate any chance of retina injury. However, experimental vari-

ance comes from equipment quality, researcher capability, and biological variance of

the research subjects. To truly understand risk to human subjects, the focus must

be placed on biological variance while reducing the influence of the other sources.

This research details a method to create a probabilistic model based solely

on biological variance to assess risk of retinal damage caused by unintended high-

power laser reflections and low-power glare systems. This research can provide a

framework for future analyses efforts in the direction of developing decision support

tools. Damage thresholds are simulated using the BTEC Thermal Model[15] based
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on the probabilistic output of the eye model previously developed by Wooddell et

al.[42]. Statistical methods are applied to create a more robust tool for accommodate

exposures from 10-milliseconds to 1-second for wavelengths between 514 and 1064

nanometers. This research can assist decision-makers and researchers to effectively

create doctrine, tactics, techniques, and procedures for military and non-military

applications

4.3 Background

ANSI Z136.7 [1] sets the guidelines for safe industrial and laboratory laser use.

These guidelines were created based on decades of experimental damage threshold

data supplemented with theory and modeling and simulation data. The experimen-

tally determined damage threshold is often defined as the amount of energy required

to create a minimal visible lesion (MVL), often on the order of 10 to 20 micrometers

in diameter, on the retina. The reported thresholds may vary from experiment to

experiment as a result of biological variance within the sample populations, mea-

surement error from one laboratory setup to the next, damage threshold observation

methods or definitions, and uncertainty stemming from either device precision or

unknown factors. The biological variance in the focal geometries of the eye is also

significant source of variance in damage thresholds [42]. The addition of the other

factors mentioned above creates the need for a large safety cushion in order to ensure

complete safety in these industrial and laboratory settings.

Lasers used in a military operational capacity follow the same safe exposure

limit guidelines set for industrial and laboratory research. Laser dazzlers, relatively

low-powered emitters used to warn or cause temporary vision impairment, are de-

signed to expose targets at levels less than the safe exposure limit. In 2005, the

Marine Corps emphasized the value of this technology by citing laser dazzlers as

an urgent need [12], formally requesting expedited delivery of dazzler systems to

increase stand-off distances, safeguard civilians, and diffuse situations in danger of
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escalation. Systems such as the B.E. Meyer Glare MOUT can be mounted on vehicles

in convoy operations and directed towards other vehicles that impede the convoy’s

progression. Checkpoints employ laser dazzlers to act as a signal to oncoming traffic

to slow down or stop [35, 25]. Washington, D.C., employs a relatively large dazzler

system to visibly warn aircraft flying into restricted airspaces. Dazzler systems such

as these are effective tools for night-time operations but lose much of their effective-

ness during the day due to the limited amount of power that can be delivered to the

target that has a much smaller pupil as a response to the daylight. Each of these

systems mentioned above are intended to be used in situations where lives may be at

stake and, therefore, the need for successful engagements may warrant a small risk

of injury.

Understanding the underlying dose-response relationship between laser energy

and retinal injury enable the creation of models that can help decision-makers de-

velop doctrine and expand application of directed energy technologies. A risk-based

assessment methodology for military laser applications would improve the overall

quality of trade space analyses for laser system deployment. To develop such a

model, the statistical distributions of damage thresholds for a population must be

classified in order to separate biological variance from the other factors associated

with error or uncertainty.

These distributions of damage provide insight to damage thresholds for a given

cumulative probability. Not only will a better understanding of the damage threshold

distribution allow safety margins to be applied in an optimal fashion, it will allow

decision-makers to have a means of allocating an increased risk when the benefit in

troop safety is required. For example, a policy may dictate that effective dazzler use

during nighttime hours is possible under the safe exposure limit restrictions of the

ANSI Z136.7 but daytime engagement requires a power level that exceeds the limit

for effective use. Using the statistical eye model developed by Wooddell et al., a 532-

nm daytime exposure (3-millimeter pupil diameter) with an aversion response time of
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100-milliseconds has a probability distribution based on focal geometry that results in

a 12-micrometer diameter spot on the retina with a probability of 1%. The predicted

damage threshold measured in total intraocular energy (TIE) for such an exposure is

approximately 5.2 times higher than the exposure limit. In other words, increasing

laser emitter power by 520% suggests only damaging 1 individual out of 100. The

daytime effective energy may be only slightly higher than the safe exposure limits

but having a probabilistic model to examine the trade space between effectiveness

and safety is invaluable.

The above example shows how probabilistic retinal damage modeling can assist

on the battlefield through the use of laser dazzlers in non-life threatening situations.

However, the effective use of laser dazzlers can also assist in the United States in

civil applications. The Washington, D.C., laser dazzler system is meant to be a first

layer of defense when communication or navigation mistakes occur. Rather than

immediately launching fighter aircraft over one of the nation’s busiest cities to escort

the violating aircraft away, the authorities use the laser system to signal the aircraft.

During hours of darkness, these lasers are easily seen. However, during the daylight

hours, they appear less bright and may not be noticed in a timely manner. The risk-

based approach to using this laser system would likely allow the perceived intensity

of the laser to be increased by a substantial factor, improving the success rate of

daytime warnings with minimal impact on safety. These systems are extremely

important due to the sheer number of potential threats requiring a fighter response.

Between September 11, 2001, and May 17, 2009, fighter aircraft responded to more

than 2,100 possible threats over the United States and carried out more than 51,000

missions in support of the overall air defense effort [18]. Improving the performance

of these systems may help to reduce the number of aircraft launches in response to

these threats in supported regions of the country.

Another need for such risk assessment tools for laser systems comes from ap-

plications where eliminating the possibility of direct or indirect exposures at a safe
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exposure level cannot be eliminated. For example, the United States government

owns several thousand square miles of land suitable for testing directed energy sys-

tems used as target designator and guidance systems. Range certification for the

use of directed energy systems requires an assessment of the NOHD for each target

area. The NOHD is a distance calculated from the laser source or target to account

for direct or reflected laser power density transmission loss through the atmosphere.

The NOHD is the distance the laser energy must travel before it is less than the

maximum permissible exposure (MPE) limit as defined by the ANSI Z136.7. Certi-

fication is granted for those ranges where the entire risk can be mitigated, usually

by restricting flight paths for laser system engagements and by closing off access to

several dozen square miles of land for the duration of testing. In the US, this practice

produces no disruptions to the public due to the sheer size of the test ranges.

However, in countries such as the United Kingdom (UK), the land mass is much

smaller although their collaborative endeavors into laser research with the United

States enable them to possess many of the same technologies. Researchers at the Air

Force Research Laboratory are working with the UK Ministry of Defense (MoD) to

adopt a new methodology for military laser risk assessments. Current deterministic

safety models ensure there is a zero chance of injury from a laser exposure but at an

extremely high cost in testing area. The probabilistic approach to risk assessment

accepts an extremely low probability of damage for the benefit of a lower cost in

terms of land area restrictions. Therefore, the probabilistic approach aims to resolve

the need to prohibit access to large parcels of land for laser use at the cost of a

risk equivalent to the laser-system equipped aircraft itself suffering a catastrophic

accident. The underlying probability of laser injury, however, assumes a distribution

of damage drawn from dose-response models based on experimental results using

probit analysis [9]. Probit analysis results include the effects from biological variance

but also negatively affects any probabilistic model due to the inclusion of factors that

cannot be removed, such as measurement error or observer agreement. Wooddell et
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al.[42], as well as other independent research efforts [34, 31], show evidence that

this method of probabilistic modeling is a poor approach due to the area of interest

being in the tails of the distribution. This is an artifact of using a lumped variance

approach such as probit and can be resolved knowing the details of the underlying

biological variation’s impact on damage threshold.

Another application of dose-response models is in the development of collateral

effects decision-support analysis tools. These tools allow decision-makers to estimate

the risk of injury to bystanders during a high-powered laser engagement. Invisible

lasers such as the neodymium-doped yttrium aluminium garnet (Nd:YAG) operating

at a wavelength of 1064 nanometers are ideal for use in relatively higher powered

systems. According to Boeing, the major defense contractor responsible for the

development of the Airborne Laser (ABL), the Nd:YAG laser on the testing platform

produced approximately 1,000 watts. This laser is used as the beacon illuminator

laser to measure optical distortion on the propagation path caused by turbulence

or atmospheric effects. Once this high power beam illuminates a target, it is either

absorbed or reflected. The study of where the reflected energy lands and how it may

affect bystanders is an example of laser collateral effects analysis.

Collateral effects decision-support tools sample the elliptical footprint of the

Nd:YAG’s energy reflected by the target cruise missile onto the Earth’s surface. The

surface spot is represented by a discrete grid with associated laser beam character-

istics that account for power loss from atmospheric transmission and absorption.

The dose-response model uses each grid point’s power level as input and returns a

probability of damage based on user-defined criteria. Figure 4.1 shows the difference

between using traditional deterministic hazard distances and using a probabilistic

approach. Note that the probability of injury is based solely on the assumption of

looking directly at the beam; however, it may be used in conjunction with a behav-

ioral model that estimates the probability of direct viewing. The two probabilities

can then be evaluated, with equal or unequal weightings, to determine the proba-
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bility of injury for any given engagement scenario. This estimated risk is then used

in the development of doctrine, tactics, techniques and protocols for the use of the

ABL.

Figure 4.1 Graphic showing comparison between a deterministic and probabilistic
approach to risk modeling. The probabilistic model (left) shows a color-
coded degree of risk based on a Gaussian footprint of laser energy. The
deterministic approach (right) shows only a region of unsafe exposures.
Calculations for elevations are excluded from this example for simplistic
demonstration.

The inclusion of the ABL system is for demonstrative purposes in the following

sections, as the ABL program remains an unfielded, although extensively tested, laser

system. The Nd:YAG system used by the ABL is also a pulsed laser system, not a

continuous wave emitter. The pulses in the system under development are assumed

to be much shorter than the time domain of this model but this example assumes a

continuous wave emitter with the same time-averaged power of one kilowatt. Dose-

response models for pulsed emitters function in a similar fashion.

Finally, another application that may benefit from a probabilistic approach

to retinal damage modeling applies to a much broader population than those who

may see a battlefield or fly aircraft in or near restricted airspace. Lasers are used

throughout the field of medicine, especially for non-invasive imaging of human tis-
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sues. Optical coherence tomography (OCT) uses photons emitted from a laser to

paint a three-dimensional picture at a resolution of close to one micrometer [13, 39].

At this resolution, OCT is often able to detect diseases and injuries of the human

eye.

Resolution and imaging at the retina’s surface is at the sub-cellular level but

diminishes with depth due to laser propagation effects. Laser energy is absorbed,

transmitted, reflected, and scattered as it propagates through a medium. The eye’s

focal path transmits most of the photons at OCT wavelengths but the retina acts as

a strong absorber decreasing the signal-to-noise ratio of the OCT device decreasing

image quality. According to Schmitt [30], OCT imaging performance depends on

emission in the near infrared, short temporal coherence length, and high irradiance.

The first and third aspects are directly examined in this study. Wooddell et al.

show that near infrared wavelengths had a much steeper slope in the cumulative

distribution function suggesting that the safety factor built into safe exposure limits

may be reduced without introducing unnecessary risk. This in turn would allow

an increased irradiance (emitter power) and, ultimately, better sub-retinal imaging

with no significant increase in risk. Furthermore, a probabilistic approach to damage

may even allow for the introduction of minimal risk in cases where better imaging is

critical to the patient’s health.

Statistical variance in threshold studies plays a significant role in directed en-

ergy biological effects, or bioeffects, research. Generally, inter- and intra-subject

variations guarantee a range of damage threshold values rather than a single exper-

imental endpoint. These ranges are reported using descriptive statistics, typically a

mean and a measure of variance that describes the spread of the data. Determining

the degree of influence for each source of variance in damage threshold studies is a

crucial factor in determining a population’s damage threshold characteristics. Un-

derstanding the root causes of threshold variance is important in the development of

safe exposure limits because many aspects used in their determination is based on a
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probabilistic approach. This research focuses on the influence of biological variance

in focal geometry of the human eye across a population and applies the distribution

of geometric parameters to create a dose-response model.

Dose-response models for laser exposures are not a new concept. However,

the underlying probability distributions sampled for the responses vary drastically.

Schulmeister et al. produced a space-based laser probabilistic risk analysis model

for retinal injuries based on the probability of exposure at any given time [32]. This

study agreed with the Sliney study [34] that probit analysis slope values could not

be used as a means to calculate probability of damage, especially in the tails of the

distributions. Therefore, Schulmeister adjusted the probit slope values to account

for biological variability and experimental difficulties such as achieving a minimal

spot on the retina 20 micrometers in diameter.

Another dose-response model was developed in 2008 by the United States Air

Force Research Laboratory (AFRL) [2] for exposures at 1064 nanometers. This

model was based on a modified least squares fit over a time domain ranging from 1

microsecond up to 1,000 seconds. The model predicted a mean dosage that created

a minimal visible lesion but reduced the results by a small fraction to keep approx-

imately 90% of all experimentally determined damage thresholds above the model

output. This was done to prevent underestimating risk. Then, the ANSI-defined

safe exposure limit served as a lower bound occurring four standard deviations less

than the mean in log-scale such that

log10(µt) − log10(MPEt) = 4σ (4.1)

σ =
log10(µt) − log10(MPEt)

4
(4.2)

where each µt is the time-dependent mean dose and MPEt is the time-dependent

maximum permissible exposure limit. Sampling from a normal distribution with a

mean of log10(µt) and standard deviation σ resulted in the probability of damage for
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a given dose. It could also be solved for the inverse distribution to determine the

dose required for a specified probability. This inverse distribution effort was chosen

after earlier research based on probit slope values calculated from the experimentally

determined ED50 and ED84 resulted in extrapolation problems for longer exposure

durations.

This 1064-nm model assumed only experimental variance for on-axis exposures.

It was intended to be a means to assess risk of retinal damage for decision support and

analysis tools built by AFRL. However, it suffers from a lumped variance approach

rather than basing the distribution of damage thresholds off of a biological variance-

based distribution of spot sizes and resulting power densities.

The current research effort creates the basic underlying distribution that may

be sampled by a behavioral model similar to the approach by Schulmeister et al.

described above or used as a library for decision support and analysis tools.

4.4 Method

The goal of this research is to create a baseline model that can easily be im-

plemented in analysis applications in the form of a library or executable file. This

research effort uses the results described by Wooddell et al.[42] using biological vari-

ance in focal geometry as the foundation for generating the probability distribution

of damage for a given exposure duration and wavelength. The results generated by

the statistical eye model agreed well with the human data; however, an experimen-

tal validation effort should be conducted to ensure the quality of the results for the

statistical eye model as an input to the ray trace propagation and BTEC thermal

model. This research effort assumes the results are representative of a human pop-

ulation and outlines the method to create a probabilistic dose response model for

retinal damage.

The dose response model must accept laser beam parameters as input values.

Characteristics such as exposure time, beam diameter at the corneal surface, and
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wavelength are significant factors in determining retinal damage and are included

as inputs. In order to get a probability of response, where the specific response

is defined as a minimum visible lesion (MVL) caused by photothermal damage to

the retina, laser emitter power must also be included as an input. However, if one

was seeking to determine the emitter power associated with a specific probability of

damage, this probability value must be an input variable.

This model assumes direct illumination from a continuous wave laser emitter

onto the retina in the macular region. The macula is the center of the retina where

central vision occurs. The areas outside of the 5-mm macular area is known as

the paramacular region, the area responsible for peripheral vision. The paramacu-

lar region is much less sensitive and has been documented to have a laser damage

threshold 40% higher than the macular region. Future studies may account for dam-

age across all regions of the retina but this research assumes an on-axis exposure

directly on the macula. Furthermore, this effort accounts for continuous wave ex-

posures. Pulse train characteristics such as duty cycle and pulsewidth complicate

extrapolation from this dose response model. However, dose response models may be

created for a specific laser system if the pulse train characteristics are known similar

to the method described in this paper.

The probabilistic dose-response model is dependent on damage thresholds es-

timated for a given exposure time, wavelength, and beam spot size on the retina.

Spot size on the retina is a function of input beam diameter and wavelength for a

randomly generated eye within a sample population. This population is generated

as described by Wooddell et al. using a vector of parameter means and covariance

matrix taken from the Rozema Statistical Eye Model [29] as well as a few other

parameters from other data sets by Garner and Iyamu [11, 16].

After performing the spectral decomposition method of adjusting for missing

data, the k × k covariance matrix, Σk×k, is used along with the vector of means,
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~µ, to generate n random variates in k parameters. The built-in MATLAB function

mvnrnd performs this task by

Xn×k = Nn×kΣk×k + µn×k (4.3)

where Nn×k is constructed from n variates in k parameters drawn from a random

normal distribution. The product of NΣ is the random error that is subsequently

added to the mean value of each parameter contained in the vector ~µ. The matrix,

X, contains most of the row vectors ~x that are needed for input into the ray trace

propagation model developed by Rockwell et al.[27]. However, the published Rozema

data sample did not include each parameter necessary to perform ray tracing. The

propagation distance through the anterior and vitreous chambers could be calculated

from the data so these were introduced as new elements of ~x. Radius of curvature

was not a straightforward calculation from the Rozema data initially so ratio of eye

length to curvatures from the other studies was used to estimate these parameters

for ray tracing. It is important to note that this may have been the cause for a

higher variance in these generated parameters than was observed in nature. This

increased variance may skew the distribution in the upper tails. The lower tail of the

distribution is fixed based on the diffraction limited spot size of 10-micrometers in

this study. These new parameters were calculated using a mean and random error

element following the Garner and Iyamu research.

The final matrix, X, consisted of n = 50, 000 rows representative of a single

eye possessing the parameters required for ray tracing. Ray tracing is modeled using

the complex Gaussian beam propagation parameter to calculate the spot sizes in

and out of each surface from the cornea to the retina as described by Rockwell et

al.[27]. This relationship is defined by:

1

qi
=

1

R(z)
+ i

λ

πw2(z)
(4.4)
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qf =
Aqi +B

Cqi +D
(4.5)

where z is the propagation distance along the axis, qi and qf are the complex beam

parameters in and out of a surface, respectively, and R(z), w(z) are the radius of

curvature and spot size (radius), respectively. A,B,C, and D come from the ray

matrix as

A B

C D

 =

1 d

0 1

 (4.6)

for propagation through a medium and

A B

C D

 =

 1 0

n− n′

Rn′
n

n′

 (4.7)

for propagation at a medium change. The values n and n′ are the prior and post

medium refractive indices and R is the radius of curvature of the refracting surface.

The 50,000 spot size results are adjusted for diffraction limited spot size by

removing m eyes with spot sizes calculated lower than this 10-micrometer diameter

minimum. The probability for these relatively few points is redistributed among the

remaining eyes.

Probability is assigned based on the empirical cumulative distribution function

percentile scores. For a final adjusted sample population of n′ = n − m, the 50th-

percentile spot size is the spot size calculated for the
n′

2

th

eye after the results had

been sorted in increasing order. In general, the pth-percentile spot is calculated for

the (n′/100)/pth eye. For large populations, a search algorithm on the results of

MATLAB’s ecdf function simplifies this task.
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These results are then used for input to the BTEC Thermal Model [15] to esti-

mate damage threshold in terms of total intraocular energy in microjoules. Damage

thresholds were sampled at 10-, 100-, and 1,000-millisecond exposure durations for

spot sizes ranging from the diffraction limit of 10 micrometers up to 1000 microm-

eters and across multiple wavelengths that are classified as significant. Wavelength

significance is based on local anomalies in absorption coefficients which result in

sharp changes to damage threshold trends. The primary areas of interest are in

the lower wavelengths between 500 and 650 nanometers and between 850 and 1000

nanometers where absorption behaved in a non-linear fashion.

The time, wavelength, and spot size dependent BTEC results are read into

MATLAB to create surface approximations for each of the three exposure dura-

tions. Interpolation for the wavelength and spot size dependent damage threshold

is performed for a given input vector on each of the three exposure time-dependent

surfaces. Piecewise cubic Hermite interpolating polynomials (PCHIP) are used to

interpolate the time dependent function sampled here in order to account for non-

linear relationships between time and damage. PCHIP is used to ensure shape

preservation for a non-constant ∆t used in the interpolation. The MATLAB built-in

function pchip performs this operation based on [10, 17].

This approach answers two primary questions for the dose-response relation-

ship:

1. How much energy (dose) is required to cause a probability of damage for a

given wavelength and exposure duration?

2. Given an exposure of a specific energy level, wavelength, and exposure dura-

tion, what is the probability of damage to someone exposed?

The following two sections describe how each question is answered using the model

described above.
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4.4.1 Estimating Dose for Probability of Damage. In order to predict dose

required for a probability of damage, p, MATLAB is used to interpolate (cubic in-

terpolant) a surface using three non-uniformly spaced data sets taken from exposure

durations of 10, 100, and 1,000 milliseconds. Linear scaling of the threshold data

measured in total intraocular energy (TIE) (microjoules) distributes the interpola-

tion surface poorly so a log-10 transform is performed. Wavelength and spot size

diameter is measured in nanometers and micrometers, respectively.

Consider a decision-maker that has determined the acceptable risk of damage

for exposure to a green laser operating at 532 nanometers during the daytime to

be 20% (p = 0.20). For this exposure, assume an aversion response time of 250

milliseconds. To determine the TIE threshold for this probability of damage, the

model generates the surface from the BTEC simulation data for more than 300

time, wavelength, and spot size combinations. The first step is to calculate the

retinal spot size based on cornea spot size and wavelength. This is done using

the statistical eye model developed by Wooddell et al. The random seed used in

generating the population may be toggled to reset each run or to begin the next

run where the last run left off. The number of variates is also user-defined. Next,

using the determined retinal spot size diameter, the damage threshold for the given

exposure at 10 milliseconds is calculated. Figure 4.2 shows this as a point of interest.

Next, the threshold is calculated on the 100-millisecond surface and is repeated

for the 1,000-millisecond exposure duration before the interpolation for time is per-

formed. Figure 4.3 shows the points of interest on the three interpolated surfaces.

Finally, to calculate the threshold dose for an exposure duration between 10

and 1,000 milliseconds, the three previously determined, time-dependent thresholds

are placed in a 3 × 2 matrix, M3×2, such that Mi,1 is time and Mi,2 is the associ-

ated damage threshold. The matrix is then input to the MATLAB PCHIP model.

Figure 4.4 shows the interpolation and predicted dose to be 770.7 microjoules. It is

important to note that adjustments must be made for transmission loss within the
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eye since the predicted dose is determined to be the energy at the retina. These

parameters are described by Maher in [22] and the procedure demonstrated in the

following section for the inverse problem.

4.4.2 Estimating Probability of Damage for Dose. The inverse problem

of calculating the dose required for a pth-percentile probability of damage works

similarly but in an iterative fashion. Given a dose, EDX , and a tolerance, ε, the

procedure described in the previous section is repeated until the power to achieve

a specific probability of damage is within ε. The search algorithm is simple linear

bisection on probability.

Consider the example in the previous section. The decision-maker has been told

his laser system has an irradiance, measured in watts per square centimeter, of 0.06 at

the estimated distance of corneal interaction. Using daytime exposure parameters

that assume a 3-mm pupil diameter and 250-millisecond aversion response, total

energy into the eye (dose) is calculated by:

DoseCornea = Irradiance(
W

cm2
) × PupilArea× ExposureT ime× 106 (4.8)

DoseCornea = 0.06
W

cm2
× π(

0.3

2
)2(cm2) × 0.25(s) × 106 (4.9)

DoseCornea = 1060µJ (4.10)

After converting from joules to microjoules with a factor of 106, the resulting energy

at the cornea that can enter the pupil is 1060 microjoules. Finally, the decision-maker

must account for transmission loss. This is performed using the transmission values
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by wavelength as published by Maher [22] and is determined to be approximately

22%. The final power is determined to be 827 microjoules at the retina below.

Transtotal = TransCornea × TransAqueous × TransLens × TransV itreous (4.11)

Transtotal = 0.898 × 0.988 × 0.930 × 0.947 = 0.78 (4.12)

TransLoss = 1 − Transtotal = 0.22 (4.13)

DoseRetina = DoseCornea ∗ Transtotal = 1148 × 0.78 = 827 (4.14)

Next, the dose-response model is used to estimate probability of damage from

896 microjoules at the retina. The result is found to be 0.219, 1.9% higher than the

desired 0.2 probability specified in the example previously in section 4.4.1. However,

the decision-maker may allow an increased risk over redesigning the laser emitter or

adjusting utilization ranges to change irradiance at the cornea. If the 0.20 probability

is a firm threshold, the decision-maker can use the results show in Figure 4.5 to adjust

emitter parameters or utilization range.

4.5 Results

The foundation for this analysis is based on simulation data and must be

validated through experiments prior to implementing such a dose-response model.

This section assumes post-validation data is used to create the dose-response surfaces

and that the retinal spot size probability distributions determined by the statistical

eye model are representative of the human population.
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Results are presented to show a contrast in ANSI-defined safe exposure limits

by wavelength and exposure duration. This analysis will demonstrate these results

in two cases. The first will examine nighttime and daytime trade space for a green

532-nm dazzler between a safe exposure and a 1% risk of damage. The second will

examine an infrared (invisible) 1064-nm emmiter for a one second exposure.

4.5.1 Trade Space for 532-nm Dazzler Systems. This first case examines

a green dazzler system operating at 532 nanometers in both day and night time

operating conditions. Daytime exposures will assume a limiting aperture (pupil

size) of 0.3 centimeters in diameter. Exposures for the nighttime operations assume

a wider aperture of 0.6 centimeters representing a pupil that has accomodated to

the darkness in order to receive more light. Aversion response time in both cases

is assumed to follow the ANSI-prescribed estimate of 0.25 seconds. Both cases also

assume an on-axis exposure with macular illumination as opposed to paramacular

(peripheral) illumination that may result in a much higher damage threshold.

In the case of a daytime exposure to the dazzler system, the maximum safe

exposure limit at the cornea is calculated as follows:

MPEcornea = 1.8t0.75 × 10−3 = 6.36 × 10−4 (4.15)

This result is measured in radiant exposure (
J

cm2
). To convert to power at the retina,

a conversion to account for aperture size and transmission loss is as follows:

MPEretina = MPEcornea × (
A

2
)2 × π × 0.78 = 3.51 × 10−5 (4.16)

where A is the aperture diameter and 0.78 is the previously calculated transmission

constant for 532-nm exposures. Finally, since the model uses power input as micro-

joules, the result is multiplied by 106 yielding final power at the retina to be 35.1
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microjoules. The same formula is applied to the 0.6 centimeter nighttime aperture

resulting in 140.4 microjoules.

Next, increase radiant exposure while holding aperture conditions constant.

Adjustments are made for limiting aperture and transmission loss for each radiant

exposure level. The resulting powers are used as inputs for the dose-response model.

The model predicts radiant exposure at 644% of the maximum permissible

exposure limit creates a 1% probability of damage for daytime exposures; however,

a radiant exposure at only 180% of the maximum permissible exposure limit creates

a 1% probability of damage for nighttime exposures. These are shown in Figures

4.6 and 4.7, respectively. These results suggest a need to investigate alternative

approaches to exposure limits as daytime and nighttime vary so greatly due to pupil

accommodation.

4.5.2 Collateral Risk Estimates for 1064-nm Emitter. Collateral effects

decision-support tools allow decision makers to estimate the risk of injury to by-

standers during a high-powered laser engagement. A typical ABL engagement would

be to range, track, and focus onto a cruise missile in flight, making dynamic adjust-

ments to propagation characteristics that are affected by atmospheric conditions.

This example assumes the typical engagement scenario with the cylindrical body of

the missile reflecting an ellipsoid back onto the earth’s surface.

Collateral effects decision-support tools sample the elliptical footprint on the

surface represented by a finite grid after estimating power loss from transmission

and absorption. In turn, the powers are used as input to a dose-response model.

The results of the model are then used to estimate the probability of injury should

someone in the grid look directly at the laser beam. It is important to note that

the probability of injury is based solely on the assumption of looking directly at the

beam; however, it may be used in conjunction with a behavioral model that estimates

the probability of direct viewing. The two probabilities can then be evaluated, with
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equal or unequal weightings, to determine the probability of injury for any given

engagement scenario.

The MPE limit for 1064 is calculated as above with an exception to aversion

response time. Since this light is invisible, there is no uncomfortable stimuli until

negative effects are induced. Therefore, the ANSI Z136.7 defines aversion response

for invisible wavelengths to be an entire second. The one-second MPE for a 1064-nm

exposure is given as 0.009
J

cm2
.

Since pupil diameter is not wavelength dependent, aperture diameters for day-

time and nighttime were the same as the previous example measuring 0.3 and 0.6

centimeters, respectively. Therefore, a radiant exposure at the MPE level yielded a

daytime retinal power of 413.5 microjoules and nighttime retinal power of 1654 mi-

crojoules. The damage threshold for the assumed diffraction limited spot size of 10

micrometers is 5,280 microjoules. As the minimal spot size possible, this represents

the 0th-percentile damage threshold. In other words, nighttime exposures can be up

to 320% of the MPE limit while daytime exposures may exceed 1200% of the MPE

limit before any possibility of damage occurs.

Figures 4.8 and 4.9 show the trade space for this exposure. Validation of this

model is necessary but these results give strong indications that exposure limits

should not only be based on wavelength and exposure duration, but also on time of

day.

4.6 Conclusion

Dose-response models provide decision-makers with a foundation for decision-

support analysis tools. The results of the examples show that dose-response models

can be used effectively in the place of the deterministic safe exposure limits devel-

oped for industry and laboratory research. Decision-makers can use such models to

quantify risk for many types of laser engagements from relatively low power dazzler

systems up to supporting higher powered systems such as the Nd:YAG laser used on
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the ABL platform. Additionally, future laser systems such as the ABL’s megawatt-

class chemical oxygen iodine laser that is used to shoot down the intended cruise

missile targets once the Nd:YAG laser is used to adjust for distortions will undoubt-

edly need the same type of analysis performed although the operating wavelength of

this system is not examined in this research.

The power range between the MPE limit and the pth probability of damage is

the trade space for the decision-maker. The information provided by dose-response

models suggest the need for further analysis of daytime exposure limits enabling a

higher emitter power for daytime dazzlers such as those used in restricted airspace.

If an overall increase of the MPE limit is not desired, the results of a validated

dose-response model could help to support a daytime waiver by the Food and Drug

Administration (FDA), the approval authority in the United States for laser systems.

Waivers or MPE limit refinement will not only effect systems already devel-

oped. Dose-response models may be used to show no increased risk of injury during

laser research experiments with respect to human subjects. A relatively new area

of study called thermal lensing creates a visual distortion in the optical path of the

eye using an infrared emitter. This is done by raising the temperature of the fluids

through the absorption of the laser light, causing a change in the refractive index

diverging the beams of focused light entering the eye. The result is a defocused

image at the retina that cannot be resolved by the brain. Initial testing has shown

this effect at current MPE levels although relaxing the exposure limits will bene-

fit advanced applications of this phenomenon. Perhaps the coalignment of dazzler

systems with a thermal lense inducing system may artificially scatter the visible

wavelengths to disrupt a larger field of view. Increasing the exposure limits would

allow for this added dazzler system’s power since MPE is not calculated separately

for a dual-beam system.

This study focuses on a few applications that may benefit from dose-response

models. Other models developed for a wider time and wavelength domain present

4-22



new challenges but will be beneficial to the laser research community to include

engineers, policy-makers, and end-users.
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Figure 4.2 Surface generated from BTEC simulation data for 10-millisecond expo-
sure. Point of interest on the surface in this graphic is the 20th-percentile
(49-µm diameter) damage threshold for a 532-nm exposure calculated
at 10 milliseconds. The plot displays the interpolated surface among
the blue circles representing the simulated data.
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Figure 4.3 10-, 100-, and 1000-millisecond surfaces generated from BTEC simula-
tion data. Point of interest for this example is the 20th-percentile damage
threshold for a 532-nm corresponding to a 49-µm diameter retinal spot
size. The plot displays the interpolated surfaces among the blue circles
representing the simulated data.
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Figure 4.4 PCHIP model for time dependency. Point of interest is at 250 millisec-
onds with a TIE dose calculated to be 770.7 microjoules.
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Figure 4.5 Probability of damage as a function of retinal dose and point result
for example in this section. Plot visualizes trade-space for risk of dose
between 800 and 840 microjoules.
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Figure 4.6 Plot depicting probability of damage as a function of radiant exposure
for 0.3-cm pupil in daytime light conditions. Dashed line represents
ANSI Z136.7-defined maximum permissible exposure (MPE) limit.
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Figure 4.7 Plot depicting probability of damage as a function of radiant exposure
for 0.6-cm pupil in nighttime light conditions. Dashed line represents
ANSI Z136.7-defined maximum permissible exposure (MPE) limit.
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Figure 4.8 Plot depicting probability of damage as a function of radiant exposure
for 0.3-cm pupil in daytime light conditions. Dashed line represents
ANSI Z136.7-defined maximum permissible exposure (MPE) limit.
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Figure 4.9 Plot depicting probability of damage as a function of radiant exposure
for 0.6-cm pupil in nighttime light conditions. Dashed line represents
ANSI Z136.7-defined maximum permissible exposure (MPE) limit.
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5. Conclusions, Recommendations, and Future Work

This research effort establishes the foundation for the development of probabilistic

models for laser damage to the human retina. The demand for these models stems

from the need to prevent injuries by understanding the many influential factors on

laser damage threshold research. Much of the variance in experimental results can

be attributed to biological variance between subjects.

Chapter 3 describes the creation of a statistical eye model for estimating the

biological variance of the human eye’s refractive conditions and the effect it has on

laser spot size and power density. The statistical eye model is used to create an input

for a propagation model. The propagation model outputs are then used as an input

for a thermal damage model. The final thermal model results are linked back to the

initial statistical eye model to determine the initial biological distribution’s influence

on damage thresholds. The simulation results from Chapter 3 are the foundation for

building empirical models such as a dose-response model used in applications such

as risk assessment or collateral effects analysis tools.

The ratios of
ED84

ED50

ranged between 1.48 and 2.68. These results varied from

the theoretical values of 1.05 to 1.15 and experimental values of 1.5 and 1.7 reported

by Sliney. However, this disagreement is expected for due to how the model is built.

The scope of this study is to examine the full influence of an entire population

distribution of refractive error. The only varying factor was focal geometry of the

eye and its influence on spot size and power density. The full scope of refractive error

naturally includes some values that would have excluded subjects from experiments.

Therefore, the experimental and theoretical results can only properly be compared

to a truncated refractive error distribution representing an experimentally feasible

population, often having less than one diopter of refractive error. Further research

may desire to resample the population of statistically generated eyes in order to

model the controlled subject population with appropriate refractive error.
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It is important to note that the effort described in Chapter 3 is based on

assumptions of accurately representing the true human eye. The results of the pop-

ulation distributions of the eyes agree quite well with the data published in the

original Rozema study. However, the published Rozema data did not include each

parameter needed to estimate the retinal spot size from a laser beam in the ray trace

model so some elements of the covariance structure had to be estimated using data

collected from other studies. After the initial model was developed, I contacted Dr.

Rozema to verify assumptions of normality in the data. He was extremely helpful

and graciously permitted me to examine his complete data set that included some

of the parameters that were needed by ray trace model. This effort creates a good

approximation but a more complete data set collected with the intention of using the

data explicitly to generate a population of eyes with all the parameters necessary to

estimate spot size on the retina using a ray trace model is needed. A complete data

set will eliminate the need to import factors into the covariance structure and allow

for better population estimates for laser safety research. Nevertheless, this research

effort provides a step by step approach to recreating a better model using the results

of eye measurements from follow-on studies.

Chapter 4 details the development of a dose-response model for laser exposures

from 10 to 1000 milliseconds and from 514 to 1064 nanometer wavelengths. The

time and wavelength domains are sampled at appropriate intervals to estimate a

damage threshold surface. The statistical eye model determines the probabilistic

responses that are then linked to a time-dependent surface location. The surfaces

are used interpolating the solution of the dose-response relationship to estimate the

probability of damage for a given dose of laser energy. The model is also modified

to solve the inverse problem to estimate the damage threshold for a user-defined

probability of response.

It is noteworthy that the distribution of eyes generated by these models repre-

sent an uncorrected population. Depending on the application, this approach may
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prove to need revision because a risk analysis effort to estimate damage from a daz-

zler system to civilians flying aircraft in the National Capitol Region must assume

the pilots possess a corrected or uncorrected vision quality that would enable their

flying. Truncating the distribution generated by the eye model or resampling a new

distribution of operationally capable refractive error ranges would be an option to

explore. Other risk analysis efforts such as those focusing on military applications

where low-power laser systems target non-combatants or non-friendly forces must as-

sume the true distribution of refractive errors in an operational setting. Truncation

or resampling is also a viable solution in these cases.

Finally, the model developed in Chapter 3 may be used to generate the distribu-

tion of wavelengths not examined in this study. The dose-response model developed

in Chapter 4 used this approach to sample wavelengths where anomalies in absorp-

tion characteristics created significant patterns in damage threshold. Examples of

this occurs in the ranges of 500 to 650 and 800 to 1000 nanometers where absorp-

tion spikes. These and the original results of the model can also provide simulation

inputs to examine time and pulse train dependencies. The results of these studies

will enhance the domain of follow-on dose-response modeling efforts.

Expanding the body of knowledge associated with laser damage thresholds is

critical for improving safety standards, developing new laser systems, and enhancing

the capabilities of existing systems. Understanding the significance of the influences

of biological variance and experimental errors and uncertainties will enable scientists

to include only the biological variance component in the development of underlying

probabilistic risk assessment models. Removing other sources of variance that are

built into traditional analysis methods such as probit will shrink the spread of data,

reduce unnecessarily large safety margins, and allow research in areas previously

thought to be considered risky in nature. In the end, this research aims to help

prevent unnecessary injury while simultaneously enabling a new premise for laser

research and risk analysis.
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Experiments will continue to be costly and the importance of modeling and

simulation efforts will continue to be significant. Validation of these models is critical.

The United States Air Force, the Department of Defense, and the international laser

research community as a whole continue to develop higher quality models validated

against experimental results. These models provide a means to reduce experimental

costs while intelligently designed experiments may be used to validate the incremen-

tal modeling improvements.

I dedicate this research effort to the men and women of the directed energy

community and hope that it serves as the foundation and roadmap for future retinal

damage models as well as models for skin and cornea exposures.
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Appendix A. Statistical Eye Model Code - FGenEyePop.m

function [f, d] = FGenEyePop(Lambda , CorneaSS , variates)

% Function that accepts a wavelength , beam radius at cornea , and

% desired population size and returns retinal beam diameter

% and associated empirical cumulative distribution function.

diffLimitedSpot = 0.0005;

% Initialize data from input files

S = load(’CovMatrix.mat’);

M = load(’MeanVector.mat’);

sd = load(’StandDev.mat’);

S = S.C;

Mu = M.Mu;

sd = sd.SD;

[m,n] = size(S);

% computer correlations from covariances

for i = 1:m

for j = 1:n

R(i,j) = S(i,j)/(sd(i)*sd(j));

end

end

% compute eigenvectors/-values

[V,D] = eig(R);

% replace negative eigenvalues by zero

newD = max(D, 0);

% reconstruct correlation matrix

BB = V * newD * V’;
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% rescale correlation matrix

T = 1 ./ sqrt(diag(BB));

TT = T * T’;

newR = BB .* TT;

StDevs = diag(sd);

newS = StDevs*newR*StDevs;

X = mvnrnd(Mu, newS , variates);

%Vitreal Depth

X(: ,18) = X(: ,15) - X(: ,14) - X(: ,12) - X(: ,13);

%Back/Front of lens

%Back

X(: ,19) = X(: ,15) - X(: ,18);

%Front

X(: ,20) = X(: ,19) - X(: ,12);

%Generate RV to assign to AL/CRC

X(: ,21) = normrnd (3.03 , 0.14, variates , 1); %distribution taken from

nigerian study

X(: ,23) = normrnd (1.21 , 0.045 , variates , 1); %distribution taken

from Garner97

for i = 1: variates

%Radius of Curvature Cornea - Anterior

X(i,22) = X(i,15)./X(i,21);

%Radius of Curvature Cornea - Anterior

X(i,24) = X(i,22)./X(i,23);

end
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%Send to ray trace function for spot size calculation for all

variates

j = 1;

for i = 1: variates

wr(i) = FEyeProp(Lambda , CorneaSS , X(i,14)/10, X(i, 12)/10, X(i

,18)/10, X(i,10)/10, X(i,11)/10, X(i,22)/10, X(i,24)/10, X(i

,13) /10);

%Exclude spots less than diffraction limit

%Another loop can be used to limit upper bound in cases where

%refractive error is limited by the user.

if wr(i) > diffLimitedSpot

r(j) = wr(i);

j = j + 1;

end

end

[f, x] = ecdf(r);

d = 2*x;
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Appendix B. Dose Response Model - Probability to Dose -

FProbToDose.m

function dose = FProbToDose(ExpDur , Lambda , CorneaSS , P_0 , variates ,

rndReset)

% Function that uses midpoint search to find based on input dose

and tolerance. Exposure parameters are:

% ExpDur - exposure duration

% Lambda - wavelength

% CorneaSS - Spot Size at Cornea (radius , cm)

if rndReset == 1

mtstream = RandStream(’mt19937ar ’);

RandStream.setGlobalStream(mtstream);

end

%% Prob Model Part

diffLimitedSpot = 0.0005;

Temp = load(’BTECResults.mat’);

T_Data = Temp.BTECResults;

for count = 1: length(T_Data (:,1))

if T_Data(count ,1) < 0.1

counter10 = count;

else if T_Data(count ,1) < 1

counter100 = count;

end

end

end

ExpDur_in10 = T_Data (1: counter10 ,1);

Lambda_in10 = T_Data (1: counter10 ,2);
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RetinaSS_in10 = T_Data (1: counter10 ,3);

Thresh_in10 = log10(T_Data (1: counter10 ,5));

ExpDur_in100 = T_Data(counter10 +1: counter100 ,1);

Lambda_in100 = T_Data(counter10 +1: counter100 ,2);

RetinaSS_in100 = T_Data(counter10 +1: counter100 ,3);

Thresh_in100 = log10(T_Data(counter10 +1: counter100 ,5));

ExpDur_in1000 = T_Data(counter100 +1:count ,1);

Lambda_in1000 = T_Data(counter100 +1:count ,2);

RetinaSS_in1000 = T_Data(counter100 +1:count ,3);

Thresh_in1000 = log10(T_Data(counter100 +1:count ,5));

%% Set up surface fits

[Lambda10 , RetinaSS10 , Thresh10] = prepareSurfaceData( Lambda_in10 ,

RetinaSS_in10 , Thresh_in10 );

[Lambda100 , RetinaSS100 , Thresh100] = prepareSurfaceData(

Lambda_in100 , RetinaSS_in100 , Thresh_in100 );

[Lambda1000 , RetinaSS1000 , Thresh1000] = prepareSurfaceData(

Lambda_in1000 , RetinaSS_in1000 , Thresh_in1000 );

ft = ’cubicinterp ’;

opts = fitoptions( ft );

opts.Normalize = ’on’;

%% Fit models to data.

[surf10ms , gof] = fit( [Lambda10 , RetinaSS10], Thresh10 , ft, opts );

[surf100ms , gof] = fit( [Lambda100 , RetinaSS100], Thresh100 , ft,

opts );

[surf1000ms , gof] = fit( [Lambda1000 , RetinaSS1000], Thresh1000 , ft,

opts );

%% Eye Distribution Model Part

% Generate distribution from eye model to calculate probability from
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% spot size.

[f, d] = FGenEyePop(Lambda , CorneaSS , variates);

cdf = [f d];

i = 1;

while cdf(i, 1) < P_0

i = i + 1;

end

spotsize = 10000* cdf(i,2);

T10 = 10^ surf10ms(Lambda , spotsize);

T100 = 10^ surf100ms(Lambda , spotsize);

T1000 = 10^ surf1000ms(Lambda , spotsize);

DRTime = [0.01 0.1 1.0];

DRResults = [T10 T100 T1000 ];

% Interpolate time , dose grid

dose = pchip(DRTime , DRResults , ExpDur);
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Appendix C. Dose Response Model - Dose to Probability -

FDoseToProb.m

function probability = FDoseToProb(dose , tol , ExpDur , Lambda ,

CorneaSS , variates)

% Function that uses midpoint search to find based on input dose

% and tolerance. Exposure parameters are:

% dose - TIE at retina in microjoules

% ExpDur - exposure duration

% Lambda - wavelength

% CorneaSS - Spot Size at Cornea (radius , cm)

% and user parameters are:

% tol - tolerance (percent as a decimal)

% variates - population size

% Random seed generator is fixed to reset to default after each run.

P = [0 1];

P_temp = FProbToDose(ExpDur , Lambda , CorneaSS , (P(1) + P(2))/2,

variates , 1);

while dose < P_temp *(1-tol) || dose > P_temp *(1+ tol)

if dose < P_temp

P(2) = (P(1) + P(2))/2;

else

P(1) = (P(1) + P(2))/2;

end

P_temp = FProbToDose(ExpDur , Lambda , CorneaSS , (P(1) + P(2))/2,

variates , 1);

end

P_Out = P_temp;

probability = (P(1) + P(2))/2;
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Appendix D. Ray Trace Approximation Code - FEyeProp.m

function [wr] = EyePropGeneral(Lambda , CorneaSS , t_antc , t_lens , tv,

rlf , rlb , rcf , rcb , t_corn)

% Function to estimate spot size radius as a function of axial depth

% Thickness is measured in centimeters and each layer ’s

% cumulative thicknesses represent the entire axial depth.

% Lambda is wavelength in nanometers

% CorneaSS is radius of the beam at the cornea in centimeters

% ref index

n_corn = 1.3684 + 5/( Lambda -100);

n_aqua = 1.31618 + 10.36987/( Lambda -4.765);

n_lens = 1.3984 + 10/( Lambda -150);

n_vit = 1.30504 + 26.94137/( Lambda +349.150);

% Ray Matrices

% Propagation

T1 = [1 t_corn; 0 1];

T2 = [1 t_antc; 0 1];

T3 = [1 t_lens; 0 1];

T4 = [1 tv; 0 1];

% Interface

R1 = [1 0; (1-n_corn)/(rcf*n_corn) 1/ n_corn ];

R2 = [1 0; (n_corn -n_aqua)/(rcb*n_aqua) n_corn/n_aqua ];

R3 = [1 0; (n_aqua -n_lens)/(rlf*n_lens) n_aqua/n_lens ];

R4 = [1 0; (n_lens -n_vit)/(rlb*n_vit) n_lens/n_vit];

% Gaussian beam propagation through eye
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% Rayleigh Range

Zr = (pi*CorneaSS ^2)/( Lambda /1e7);

i = sqrt(-1);

q0 = i*Zr;

w_corn = sqrt((-Lambda /1e7)/(pi*imag (1/q0)));

% Front surface of cornea refraction

Mc1 = (R1(1,1)*q0 + R1(1,2))/(R1(2,1)*q0 + R1(2,2));

qc1 = 1/( real (1/Mc1) + i*imag (1/Mc1));

% Cornea propagation

Mc2 = (T1(1,1)*qc1 + T1(1,2))/(T1(2,1)*qc1 + T1(2,2));

qc2 = 1/( real (1/Mc2) + i*imag (1/Mc2));

% Back surface of cornea

Ma1 = (R2(1,1)*qc2 + R2(1,2))/(R2(2,1)*qc2 + R2(2,2));

qa1 = 1/( real (1/Ma1) + i*imag (1/Ma1));

% Spot size into aqueous

wa = sqrt((-Lambda /1e7)/(pi*n_corn*imag (1/ qa1)));

% Aqueous propagation

Ma2 = (T2(1,1)*qa1 + T2(1,2))/(T2(2,1)*qa1 + T2(2,2));

qa2 = 1/( real (1/Ma2) + i*imag (1/Ma2));

% Spot size into lens

wL1 = sqrt((-Lambda /1e7)/(pi*n_aqua*imag (1/qa2)));

% Front surface of lens

ML1 = (R3(1,1)*qa2 + R3(1,2))/(R3(2,1)*qa2 + R3(2,2));

qL1 = 1/( real (1/ML1) + i*imag (1/ML1));

% Lens propagation
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ML2 = (T3(1,1)*qL1 + T3(1,2))/(T3(2,1)*qL1 + T3(2,2));

qL2 = 1/( real (1/ ML2) + i*imag (1/ML2));

% Back surface of lens

Mv1 = (R4(1,1)*qL2 + R4(1,2))/(R4(2,1)*qL2 + R4(2,2));

qv1 = 1/( real (1/ Mv1) + i*imag (1/Mv1));

% Spot size out of lens

wL2 = sqrt((-Lambda /1e7)/(pi*n_lens*imag (1/qv1)));

% Vitreous propagation

Mv = (T4(1,1)*qv1 + T4(1,2))/(T4(2,1)*qv1 + T4(2,2));

qr = 1/( real (1/Mv) + i*imag (1/Mv));

% Spot size on retina

wr = sqrt((-Lambda /1e7)/(pi*n_vit*imag (1/qr)));
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Appendix E. BTEC Config File - Main

#KeyValue main BTEC configuration (THIS MUST BE THE FIRST LINE IN THE FILE)

Dimensions = 2

SimulationType = "Search"

AxialGridType = 0

Nz = 500

zMin = 0

zMax = 0.1000

zInf = 0.1300

zStretchRatio = 1

zMinBC = 3

zMaxBC = 0

RadialGridType = 0

Nr = 500

rMax = 0.0700

rInf = 0.10

rStretchRatio = 1

rMaxBC = 0

TotalSimTime = 3.0

dtMax = 0.01

TissueBaseTemp = 37

AmbientTemp = 37

RelHumidity = 1.0

AmbientRefIndex = 1.0

LogDataFlag = 0

LogInterval = 50

ThermalLogInterval = -1

AxialLogInterval = -1

SourceLogInterval = -1

DamageLogInterval = -1

MaxPowerRatio = 10.0

MinPowerRatio = 0.1

ConvergeThresh = 0.03

DamageThreshold = 1.0

MaxTempThreshold = VALUE

InitialConditionsFlag = 0

#InitialConditionsFile = "STRING"

Layer[0] = "layer.retina-vitreous.mainster.btec.1s-514nm.auto-gen.1"

Layer[1] = "layer.retina-rpe.mainsterx2.btec.1s-514nm.auto-gen.1"

Layer[2] = "layer.retina-choroid.mainster.btec.1s-514nm.auto-gen.1"

Layer[3] = "layer.retina-sclera.mainster.btec.1s-514nm.auto-gen.1"
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StandardEmitter[0] = "beamTemplate.emitter.btec.1s-514nm.auto-gen.1"

#Zscan[0] = "place_holder"

Sensor[0] = "retina_damage.sensor.btec.1s-514nm.auto-gen.1"
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Appendix F. BTEC Config File - Emitter

#KeyValue Standard Emitter configuration (THIS MUST BE THE FIRST LINE IN THE FILE)

#BaseEmitter Configuration Keys

EmitterType = "LinAbsEmitter"

ProfileType = 1

PeakPower = 0.005

MinWavelength = 514

FocusType = 0

BeamDiameter = 0.012

BeamDiameter2 = 0.0100

BeamWaistPosition = 100.0

#BeamProfileFilename = "STRING"

PulseType = 1

PulseDuration = 1.0

PulsePeriod = 100.0

StartTime = 0.0

StopTime = 10000

TimeStepType = 2

dtMinOn = 5.0E-4

dtMinOff = 1.0E-3

StretchOn = 1.10

StretchOff = 1.10

#Sensor[0] = "place_holder"

#LinAbsEmitter Configuration Keys

# EmitterType = "LinAbsEmitter"

BeamDivergence = 0.0015
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Appendix G. BTEC Config File - Sensor

#SensorBase Configuration Keys

SensorType = "TrapDamage"

PointSensor = 0

LogInterval = -1

LogPrecision = 3

ScalarLogInterval = 0

GradientLogInterval = 0

ScalarMinLogInterval = -1

ScalarMaxLogInterval = -1

ScalarAvgLogInterval = -1

GradientMinLogInterval = 0

GradientMaxLogInterval = 0

GradientAvgLogInterval = 0

ExpandMinSensorRange = 1

TruncateMaxSensorRange = 0

#Sensor_2D Sepcific Configuration Keys

MinimumZaxisValue = 0.0300

MaximumZaxisValue = 0.0600

MinimumRaxisValue = 0.0010

MaximumRaxisValue = 0.0200

MaxThresholdValue = 1

MaxThresholdError = 0.03

MaxThresholdSearchAlg = "Midpoint"
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Appendix H. BTEC Config File - Layer

#KeyValue layer configuration file

LayerType = 11

Description = "Retinal Pigment Epithelium"

Thickness = 0.0012

Density = 1.0

SpecificHeat = 4.1868

Conductivity = 0.00628

ConvHeatTransRate = 0.0

Emissivity = 1.0

BloodFlowRate = 0.001

#Refractive index and dn/dt vs wavelength

RefractiveIndex[0] = "0 1.33 1"

RefractiveIndex[1] = "1000000 1.33 1"

#Scattering Anisotropy vs wavelength

Anisotropy[0] = "0 0.8"

Anisotropy[1] = "1000000 0.8"

#Scattering Coefficients vs wavelengt

Scattering[0] = "0 0.0"

Scattering[1] = "1000000 0.0"

#Reflectance

Reflectance[0] = "400.0 0.080"

Reflectance[1] = "500.0 0.070"

Reflectance[2] = "514.5 0.070"

Reflectance[3] = "520.8 0.070"

Reflectance[4] = "600.0 0.070"

Reflectance[5] = "647.1 0.075"

Reflectance[6] = "694.3 0.079"

Reflectance[7] = "700.0 0.080"

Reflectance[8] = "800.0 0.095"

Reflectance[9] = "900.0 0.144"

Reflectance[10] = "1000.0 0.210"

Reflectance[11] = "1060.0 0.252"

Reflectance[12] = "1064.0 0.255"

Reflectance[13] = "1100.0 0.280"

Reflectance[14] = "1200.0 0.260"

Reflectance[15] = "1400.0 0.260"
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Temp[0] = 0.0 # DBL: temperature for rate ceofficients

A[0] = 3.1e99 # DBL: A rate coef. [1/s]

Ea[0] = 6.28e5 # DBL: Ea rate coef. [J/mole]

Temp[1] = 99999 # DBL: temperature for rate ceofficients

A[1] = 3.1e99 # DBL: A rate coef. [1/s]

Ea[1] = 6.28e5 # DBL: Ea rate coef. [J/mole]

#Absorption

# M.A. Mainster, T.J. White, J.H. Tips, P.W. Wilson

# "Retinal-Temperature Increases Produced by Intense Light Sources"

# Journal of the Optical Society of America 60(2), 264-271, (1970).

Absorption[0] = "0 0"

Absorption[1] = "399 0"

Absorption[2] = "400 6000"

Absorption[3] = "420 2800"

Absorption[4] = "440 2000"

Absorption[5] = "460 1800"

Absorption[6] = "480 1800"

Absorption[7] = "500 1840"

Absorption[8] = "520 1680"

Absorption[9] = "540 1400"

Absorption[10] = "560 1200"

Absorption[11] = "580 1040"

Absorption[12] = "600 960"

Absorption[13] = "620 880"

Absorption[14] = "640 800"

Absorption[15] = "660 760"

Absorption[16] = "680 720"

Absorption[17] = "700 640"

Absorption[18] = "720 600"

Absorption[19] = "740 560"

Absorption[20] = "760 520"

Absorption[21] = "780 400"

Absorption[22] = "800 280"

Absorption[23] = "820 260"

Absorption[24] = "840 250"

Absorption[25] = "860 240"

Absorption[26] = "880 210"

Absorption[27] = "900 200"

Absorption[28] = "920 196"

Absorption[29] = "940 152"

Absorption[30] = "960 144"
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Absorption[31] = "980 168"

Absorption[32] = "1000 176"

Absorption[33] = "1020 176"

Absorption[34] = "1040 164"

Absorption[35] = "1060 152"

Absorption[36] = "1080 144"

Absorption[37] = "1100 140"

H-3



Appendix I. Rozema Statistical Eye Model Data

Table I.1 contains the mean values and covariance data taken from the human eye

study.

Table I.1 Table of eye data taken from Rozema study.
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Appendix J. Quad Chart
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Algorithm Results 
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distribution based on convolution of experimental 

error, variance, and uncertainty 

 Modeling efforts supporting eye safety applications 

must quantify contribution from biological variance 

 Using a statistical model eye developed in this 

research, biological distributions are sampled to 

determine contribution of population variance 

 First-ever probabilistic model to estimate damage 

threshold based on biological variance 

 Developed statistical eye model to predict power 

density at the retina for thermal damage threshold 

simulation 

 Provides foundation for $2M/yr risk assessment 

and decision support tools efforts 

 

 User input for laser beam parameters: 𝜆 – wavelength, 𝑡 – exposure 

duration, 𝑟 – input beam radius 

 Generate eye population of size 𝑛 (A) for Gaussian beam ray trace 

propagator using 𝜆, 𝑟 to estimate spot sizes distribution (𝑟′) 

 Sample empirical distribution of 𝑟′ for 𝑝𝑡ℎ-percentile (B) 
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 Report distribution of population damage thresholds using Φ 𝑝  - provides 
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